Gupta et al., 2020 - Google Patents
Chaos theory: an emerging tool for arrhythmia detectionGupta et al., 2020
- Document ID
- 12950159126807684316
- Author
- Gupta V
- Mittal M
- Mittal V
- Publication year
- Publication venue
- Sensing and Imaging
External Links
Snippet
The heart is an important muscular organ of the human body which pumps blood throughout the body. It is essential for human life. Timely and accurate assessment of the functioning of the heart has great relevance for reducing the death rate due to cardiac diseases around the …
- 206010007521 Cardiac arrhythmias 0 title abstract description 42
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/04—Detecting, measuring or recording bioelectric signals of the body of parts thereof
- A61B5/0402—Electrocardiography, i.e. ECG
- A61B5/0452—Detecting specific parameters of the electrocardiograph cycle
- A61B5/046—Detecting fibrillation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7253—Details of waveform analysis characterised by using transforms
- A61B5/726—Details of waveform analysis characterised by using transforms using Wavelet transforms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7239—Details of waveform analysis using differentiation including higher order derivatives
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/30—Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
- G06F19/34—Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
- G06F19/345—Medical expert systems, neural networks or other automated diagnosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/30—Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
- G06F19/32—Medical data management, e.g. systems or protocols for archival or communication of medical images, computerised patient records or computerised general medical references
- G06F19/322—Management of patient personal data, e.g. patient records, conversion of records or privacy aspects
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/024—Detecting, measuring or recording pulse rate or heart rate
- A61B5/02411—Detecting, measuring or recording pulse rate or heart rate of foetuses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7232—Signal processing specially adapted for physiological signals or for diagnostic purposes involving compression of the physiological signal, e.g. to extend the signal recording period
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/04—Detecting, measuring or recording bioelectric signals of the body of parts thereof
- A61B5/0476—Electroencephalography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/04—Detecting, measuring or recording bioelectric signals of the body of parts thereof
- A61B5/04012—Analysis of electro-cardiograms, electro-encephalograms, electro-myograms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/0205—Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7203—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00496—Recognising patterns in signals and combinations thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/40—Detecting, measuring or recording for evaluating the nervous system
- A61B5/4076—Diagnosing or monitoring particular conditions of the nervous system
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gupta et al. | Chaos theory: an emerging tool for arrhythmia detection | |
Gupta et al. | QRS complex detection using STFT, chaos analysis, and PCA in standard and real-time ECG databases | |
Li et al. | Patient-specific ECG classification by deeper CNN from generic to dedicated | |
Gupta et al. | Chaos theory and ARTFA: emerging tools for interpreting ECG signals to diagnose cardiac arrhythmias | |
Gupta et al. | R-peak detection based chaos analysis of ECG signal | |
Ansari et al. | A review of automated methods for detection of myocardial ischemia and infarction using electrocardiogram and electronic health records | |
Gupta et al. | A novel FrWT based arrhythmia detection in ECG signal using YWARA and PCA | |
Sharma et al. | A novel hybrid deep learning method with cuckoo search algorithm for classification of arrhythmia disease using ECG signals | |
Gupta et al. | Arrhythmia detection in ECG signal using fractional wavelet transform with principal component analysis | |
Haleem et al. | Time adaptive ECG driven cardiovascular disease detector | |
Lin | Frequency-domain features for ECG beat discrimination using grey relational analysis-based classifier | |
Oweis et al. | QRS detection and heart rate variability analysis: A survey | |
Gupta et al. | Efficient R-peak detection in electrocardiogram signal based on features extracted using Hilbert transform and Burg method | |
Gupta | Wavelet transform and vector machines as emerging tools for computational medicine | |
Mastoi et al. | Machine learning-data mining integrated approach for premature ventricular contraction prediction | |
Ramkumar et al. | A graphical user interface based heart rate monitoring process and detection of PQRST peaks from ECG signal | |
Wu et al. | Personalizing a generic ECG heartbeat classification for arrhythmia detection: a deep learning approach | |
Karri et al. | A real-time embedded system to detect QRS-complex and arrhythmia classification using LSTM through hybridized features | |
Mazidi et al. | Detection of premature ventricular contraction (PVC) using linear and nonlinear techniques: an experimental study | |
Prakash et al. | A system for automatic cardiac arrhythmia recognition using electrocardiogram signal | |
Gupta et al. | Attractor plot as an emerging tool in ECG signal processing for improved health informatics | |
Allam et al. | Multi-stream Bi-GRU network to extract a comprehensive feature set for ECG signal classification | |
Anbalagan et al. | Detection of Atrial Fibrillation from ECG Signal Using Efficient Feature Selection and Classification | |
Kapfo et al. | Automated detection of myocardial infarction from ECG signal using variational mode decomposition based analysis | |
Deepak et al. | Review of ECG Signal Classification Using Deep Learning and Traditional Methods |