Steinke et al., 2001 - Google Patents
Low power code generation for a RISC processor by register pipeliningSteinke et al., 2001
View PDF- Document ID
- 12877167968229685840
- Author
- Steinke S
- Schwarz R
- Wehmeyer L
- Marwedel P
- Publication year
- Publication venue
- Technical report, Dept. Comput. Sci. XII
External Links
Snippet
This paper presents the implementation of the compiler technique register pipelining with respect to energy optimization and its comparison against performance optimization. Generally, programs optimized for performance are also energy optimized. An exception to …
- 230000015654 memory 0 abstract description 46
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/30—Arrangements for executing machine-instructions, e.g. instruction decode
- G06F9/32—Address formation of the next instruction, e.g. incrementing the instruction counter, jump
- G06F9/322—Address formation of the next instruction, e.g. incrementing the instruction counter, jump for non-sequential address
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/30—Arrangements for executing machine-instructions, e.g. instruction decode
- G06F9/38—Concurrent instruction execution, e.g. pipeline, look ahead
- G06F9/3836—Instruction issuing, e.g. dynamic instruction scheduling, out of order instruction execution
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/30—Arrangements for executing machine-instructions, e.g. instruction decode
- G06F9/30003—Arrangements for executing specific machine instructions
- G06F9/30007—Arrangements for executing specific machine instructions to perform operations on data operands
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/30—Arrangements for executing machine-instructions, e.g. instruction decode
- G06F9/38—Concurrent instruction execution, e.g. pipeline, look ahead
- G06F9/3824—Operand accessing
- G06F9/383—Operand prefetching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/30—Arrangements for executing machine-instructions, e.g. instruction decode
- G06F9/38—Concurrent instruction execution, e.g. pipeline, look ahead
- G06F9/3867—Concurrent instruction execution, e.g. pipeline, look ahead using instruction pipelines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/40—Transformations of program code
- G06F8/41—Compilation
- G06F8/44—Encoding
- G06F8/443—Optimisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5045—Circuit design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5009—Computer-aided design using simulation
- G06F17/504—Formal methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/30—Arrangements for executing machine-instructions, e.g. instruction decode
- G06F9/34—Addressing or accessing the instruction operand or the result; Formation of operand address; Addressing modes
- G06F9/345—Addressing or accessing the instruction operand or the result; Formation of operand address; Addressing modes of multiple operands or results
- G06F9/3455—Addressing or accessing the instruction operand or the result; Formation of operand address; Addressing modes of multiple operands or results using stride
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/40—Transformations of program code
- G06F8/41—Compilation
- G06F8/44—Encoding
- G06F8/445—Exploiting fine grain parallelism, i.e. parallelism at instruction level
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2217/00—Indexing scheme relating to computer aided design [CAD]
- G06F2217/78—Power analysis and optimization
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F1/00—Details of data-processing equipment not covered by groups G06F3/00 - G06F13/00, e.g. cooling, packaging or power supply specially adapted for computer application
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power Management, i.e. event-based initiation of power-saving mode
- G06F1/3234—Action, measure or step performed to reduce power consumption
- G06F1/324—Power saving by lowering clock frequency
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2217/00—Indexing scheme relating to computer aided design [CAD]
- G06F2217/68—Processors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2217/00—Indexing scheme relating to computer aided design [CAD]
- G06F2217/12—Design for manufacturability
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Steinke et al. | An accurate and fine grain instruction-level energy model supporting software optimizations | |
Stephenson et al. | Bidwidth analysis with application to silicon compilation | |
O'Neal et al. | HLSPredict: Cross platform performance prediction for FPGA high-level synthesis | |
Xin et al. | Identifying and predicting timing-critical instructions to boost timing speculation | |
Vasilakis | An instruction level energy characterization of arm processors | |
Wehmeyer et al. | Influence of memory hierarchies on predictability for time constrained embedded software | |
US20150309779A1 (en) | Systems and methods for power optimization of processors | |
Senn et al. | SoftExplorer: Estimating and optimizing the power and energy consumption of a C program for DSP applications | |
Morse et al. | On the limitations of analyzing worst-case dynamic energy of processing | |
Wehmeyer et al. | Analysis of the influence of register file size on energy consumption, code size, and execution time | |
Steinke et al. | Low power code generation for a RISC processor by register pipelining | |
Stephenson | Bitwise: Optimizing bitwidths using data-range propagation | |
Lucas et al. | ALUPower: data dependent power consumption in GPUs | |
Roy et al. | A compiler based leakage reduction technique by power-gating functional units in embedded microprocessors | |
Lipasti et al. | Exploiting value locality to exceed the dataflow limit | |
Steinke et al. | Moving program objects to scratch-pad memory for energy reduction | |
Falk et al. | Loop nest splitting for WCET-optimization and predictability improvement | |
Azeemi | Power Aware Framework for Dense Matrix Operations in Multimedia Processors | |
Ding et al. | Loop-based instruction prefetching to reduce the worst-case execution time | |
Mishra et al. | Architecture description language driven design space exploration in the presence of coprocessors | |
Steinke et al. | Improving Energy Consumption by Compiler Optimization Technique Register Pipelining | |
Liu et al. | Exploiting stack distance to estimate worst-case data cache performance | |
Yousaf et al. | Stochastic model based dynamic power estimation of microprocessor using Imperas simulator | |
Noori et al. | Enhancing energy efficiency of processor-based embedded systems through post-fabrication ISA extension | |
Pallister | Exploring the fundamental differences between compiler optimisations for energy and for performance |