[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Yan et al., 2015 - Google Patents

The design of power amplifier switch mode power supply for handset applications

Yan et al., 2015

Document ID
12873586296272582305
Author
Yan W
Wang Y
Wang Z
Jin Y
Shi G
Publication year
Publication venue
2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER)

External Links

Snippet

This paper presents a design of switch mode power supply that can be used in the handheld power amplifier MRF9742 for the TD-LTE signal. This power supply uses PWM mode buck- convertor structure and envelopes tracking technology, which can acquire the envelope of …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0233Continuous control by using a signal derived from the output signal, e.g. bootstrapping the voltage supply
    • H03F1/0238Continuous control by using a signal derived from the output signal, e.g. bootstrapping the voltage supply using supply converters
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0222Continuous control by using a signal derived from the input signal
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • H03F3/2176Class E amplifiers
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0261Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A
    • H03F1/0272Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A by using a signal derived from the output signal
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0277Selecting one or more amplifiers from a plurality of amplifiers
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0294Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using vector summing of two or more constant amplitude phase-modulated signals
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/102A non-specified detector of a signal envelope being used in an amplifying circuit
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/204A hybrid coupler being used at the output of an amplifier circuit
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers without distortion of the input signal
    • H03G3/004Control by varying the supply voltage

Similar Documents

Publication Publication Date Title
JP6571071B2 (en) Envelope tracker with variable boost power supply voltage
Wang et al. An improved power-added efficiency 19-dBm hybrid envelope elimination and restoration power amplifier for 802.11 g WLAN applications
Hassan et al. A wideband CMOS/GaAs HBT envelope tracking power amplifier for 4G LTE mobile terminal applications
Wang et al. A monolithic high-efficiency 2.4-GHz 20-dBm SiGe BiCMOS envelope-tracking OFDM power amplifier
Kim et al. Envelope-tracking two-stage power amplifier with dual-mode supply modulator for LTE applications
Choi et al. A new power management IC architecture for envelope tracking power amplifier
Wang Demystifying envelope tracking: Use for high-efficiency power amplifiers for 4G and beyond
Choi et al. Optimized envelope tracking operation of Doherty power amplifier for high efficiency over an extended dynamic range
US20090289720A1 (en) High-Efficiency Envelope Tracking Systems and Methods for Radio Frequency Power Amplifiers
Hassan et al. High efficiency envelope tracking power amplifier with very low quiescent power for 20 MHz LTE
CN107863939B (en) Low-power consumption feedback type power amplifying circuit
Kim et al. Analysis of envelope-tracking power amplifier using mathematical modeling
Hsu et al. An envelope tracking supply modulator utilizing a GaN-based integrated four-phase switching converter and average power tracking-based switch sizing with 85.7% efficiency for 5G NR power amplifier
Hsia et al. Wideband high efficiency digitally-assisted envelope amplifier with dual switching stages for radio base-station envelope tracking power amplifiers
Lin et al. A CMOS envelope tracking supply converter for RF power amplifiers of 5G NR mobile terminals
Li et al. A highly efficient SiGe differential power amplifier using an envelope-tracking technique for 3GPP LTE applications
Zavarei et al. Envelope-tracking common-drain CMOS power amplifier with a switching-only supply modulator for LTE applications
Yan et al. The design of power amplifier switch mode power supply for handset applications
Hassan et al. An envelope-tracking CMOS-SOS power amplifier with 50% overall PAE and 29.3 dBm output power for LTE applications
Kwak et al. High efficiency wideband envelope tracking power amplifier with direct current sensing for LTE applications
Gunasegaran et al. A CMOS 180nm class-AB power amplifier with intergrated phase linearizer for BLE 4.0 achieving 11.5 dB gain, 38.4% PAE and 20dBm OIP3
Asbeck et al. Si IC development for high efficiency envelope tracking power amplifiers
Wang A supply modulator with nested structure for wideband envelope tracking power amplifier
Choi et al. 28.8 dBm, high efficiency, linear GaN power amplifier with in-phase power combining for IEEE 802.11 p applications
Kim et al. Efficiency enhanced CMOS digitally controlled dynamic bias switching power amplifier for LTE