[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Gamble et al., 2004 - Google Patents

Improving off-design nozzle performance using fluidic injection

Gamble et al., 2004

Document ID
12763337785111379334
Author
Gamble E
Haid D
Publication year
Publication venue
42nd AIAA aerospace sciences meeting and exhibit

External Links

Snippet

Fluidic injection of high-pressure air has been shown to improve nozzle performance and reduce off-axis thrust at off-design flight conditions for a hypersonic (X43 type) vehicle with a turbine-based combined cycle (TBCC). Results of this study indicate that significant …
Continue reading at arc.aiaa.org (other versions)

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K7/00Plants in which the working fluid is used in a jet only, i.e. the plants not having a turbine or other engine driving a compressor or a ducted fan; Control thereof
    • F02K7/10Plants in which the working fluid is used in a jet only, i.e. the plants not having a turbine or other engine driving a compressor or a ducted fan; Control thereof characterised by having ram-action compression, i.e. aero-thermo-dynamic-ducts or ram-jet engines
    • F02K7/16Composite ram-jet/turbo-jet engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/78Other construction of jet pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket- engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/97Rocket nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/06Varying effective area of jet pipe or nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/46Nozzles having means for adding air to the jet or for augmenting the mixing region between the jet and the ambient air, e.g. for silencing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/52Nozzles specially constructed for positioning adjacent to another nozzle or to a fixed member, e.g. fairing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket- engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/42Rocket- engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using liquid or gaseous propellants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K7/00Plants in which the working fluid is used in a jet only, i.e. the plants not having a turbine or other engine driving a compressor or a ducted fan; Control thereof
    • F02K7/02Plants in which the working fluid is used in a jet only, i.e. the plants not having a turbine or other engine driving a compressor or a ducted fan; Control thereof the jet being intermittent, i.e. pulse-jet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket- engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/80Rocket- engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof characterised by thrust or thrust vector control
    • F02K9/82Rocket- engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof characterised by thrust or thrust vector control by injection of a secondary fluid into the rocket exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry

Similar Documents

Publication Publication Date Title
Gamble et al. Improving off-design nozzle performance using fluidic injection
Smart Design of three-dimensional hypersonic inlets with rectangular-to-elliptical shape transition
Vyvey et al. Study of an airbreathing variable cycle engine
Park et al. Low-order model for buzz oscillations in the intake of a ramjet engine
Forghany et al. Numerical investigation of optimization of injection angle effects on fluidic thrust vectoring
Hui et al. Numerical simulation of variable-geometry inlet for TRRE combined cycle engine
Safdar et al. Numerical modeling and analysis of afterburner combustion of a low bypass ratio turbofan engine
Siddiqui et al. Design and analysis on scramjet engine inlet
Haws et al. Computational investigation of a method to compress air fluidically in supersonic inlets
Ferlauto et al. Shock vector control technique for aerospike nozzles
Shi et al. Numerical study of a boundary layer bleedfor a rocket-based combined-cycle inlet in ejector mode
Safdar et al. Numerical Analysis of Afterburner Characteristics of a Low Bypass Ratio Turbofan Engine at Various Flight Conditions
Anand et al. 3D CFD analysis in an afterburner using NUMECA
Yang et al. Analysis and manipulation of the separation zone in an overexpanded combined exhaust nozzle
Yu et al. Key factors affecting overexpanded flow separation in design of large expansion ratio single expansion ramp nozzle
Buettner et al. Design of a transient variable cycle turbine engine model for system integration with controls
Khan et al. Design of hypersonic scramjet engine operating between Mach 5 to Mach 9
Takahashi Performance Evaluation of Airframe-Integrated Aerospike Propulsion Systems in Off-Design Flight Conditions
Keshmiri et al. Ramjet and scramjet engine cycle analysis for a generic hypersonic vehicle
Etele et al. Exchange inlet design for rocket-based combined-cycle engines
Gronland et al. Nozzle/afterbody integration of hypersonic vehicles by means of secondary air injection
Zhengze et al. Numerical Investigations on RBCC Variable Inlet in Ma= 2-6
Georgiadis et al. Aerodynamic design and analysis of high performance nozzles for Mach 4 accelerator vehicles
Thangadpai et al. Numerical investigation of the intake flow characteristics for a ramjet engine with and without heat addition in the combustion chamber
Mahmood Simulation of back pressure effect on behaviour of convergent divergent nozzle