Wang et al., 2001 - Google Patents
Bismuth‐coated screen‐printed electrodes for stripping voltammetric measurements of trace leadWang et al., 2001
View PDF- Document ID
- 12602892696471707804
- Author
- Wang J
- Lu J
- Hocevar S
- Ogorevc B
- Publication year
- Publication venue
- Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis
External Links
Snippet
Bismuth‐coated screen‐printed carbon electrodes offer reliable quantitation of trace lead in connection to anodic stripping voltammetry. Such use of bismuth films (instead of mercury coatings) does not affect the reliability of stripping measurements of trace lead. The …
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth   [Bi] 0 title abstract description 42
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/327—Biochemical electrodes electrical and mechanical details of in vitro measurements
- G01N27/3271—Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/333—Ion-selective electrodes or membranes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/48—Polarography, i.e. measuring changes in current under a slowly-varying voltage
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/42—Measuring disposition or liberation of materials from an electrolyte; Coulometry, i.e. measuring coulomb-equivalent of material in an electrolyte
- G01N27/423—Coulometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/48—Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay
- G01N33/543—Immunoassay; Biospecific binding assay with an insoluble carrier for immobilising immunochemicals
- G01N33/54366—Apparatus specially adapted for solid-phase testing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/404—Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors
- G01N27/4045—Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors for gases other than oxygen
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/4166—Systems measuring a particular property of an electrolyte
- G01N27/4167—Systems measuring a particular property of an electrolyte pH
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the impedance of the material
- G01N27/04—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the impedance of the material by investigating resistance
- G01N27/12—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the impedance of the material by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/18—Water
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES OR MICRO-ORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or micro-organisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/001—Enzyme electrodes
- C12Q1/005—Enzyme electrodes involving specific analytes or enzymes
- C12Q1/006—Enzyme electrodes involving specific analytes or enzymes for glucose
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N17/00—Investigating resistance of materials to the weather, to corrosion, or to light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/40—Concentrating samples
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Bismuth‐coated screen‐printed electrodes for stripping voltammetric measurements of trace lead | |
Krolicka et al. | Study on catalytic adsorptive stripping voltammetry of trace cobalt at bismuth film electrodes | |
Wang et al. | Mercury-free disposable lead sensors based on potentiometric stripping analysis of gold-coated screen-printed electrodes | |
Wang et al. | Insights into the anodic stripping voltammetric behavior of bismuth film electrodes | |
Wang et al. | Performance of screen-printed carbon electrodes fabricated from different carbon inks | |
Wu et al. | Simultaneous measurement of Pb, Cd and Zn using differential pulse anodic stripping voltammetry at a bismuth/poly (p-aminobenzene sulfonic acid) film electrode | |
Wang et al. | Effect of surface‐active compounds on the stripping voltammetric response of bismuth film electrodes | |
Pauliukaitė et al. | Characterization and applications of a bismuth bulk electrode | |
Lin et al. | Adsorptive stripping voltammetric measurements of trace uranium at the bismuth film electrode | |
Wang et al. | Screen-printed ultramicroelectrode arrays for on-site stripping measurements of trace metals | |
CN100430721C (en) | Methods for producing highly sensitive potentiometric sensors | |
Zen et al. | Flow injection analysis of hydrogen peroxide on copper-plated screen-printed carbon electrodes | |
US6682647B1 (en) | Bismuth-based electrochemical stripping analysis | |
Wang et al. | Simultaneous detection of copper, lead and zinc on tin film/gold nanoparticles/gold microelectrode by square wave stripping voltammetry | |
Wahyuni et al. | A simple approach to fabricate a screen-printed electrode and its application for uric acid detection | |
Rico et al. | A novel cell design for the improved stripping voltammetric detection of Zn (II), Cd (II), and Pb (II) on commercial screen-printed strips by bismuth codeposition in stirred solutions | |
US8702957B2 (en) | Electrochemical detection of silica species | |
Salimi et al. | Adsorption and reactivity of chlorogenic acid at a hydrophobic carbon ceramic composite electrode: application for the amperometric detection of hydrazine | |
Chiu et al. | A disposable screen-printed silver strip sensor for single drop analysis of halide in biological samples | |
Wang et al. | Adsorptive stripping voltammetric measurements of trace molybdenum at the bismuth film electrode | |
Periasamy et al. | Novel same-metal three electrode system for cyclic voltammetry studies | |
Sun et al. | Fabrication and characterization of planar reference electrode for on-chip electroanalysis | |
Oliveira Salles et al. | Bismuth modified gold microelectrode for Pb (II) determination in wine using alkaline medium | |
Moreno et al. | Cathodic electrochemical determination of herbicides in acid media using a bismuth film electrode | |
Zhang et al. | Disposable electrochemical capillary-fill device for glucose sensing incorporating a water-soluble enzyme/mediator layer |