Blial et al., 2016 - Google Patents
An overview on SDN architectures with multiple controllersBlial et al., 2016
View PDF- Document ID
- 12507171786577674629
- Author
- Blial O
- Ben Mamoun M
- Benaini R
- Publication year
- Publication venue
- Journal of Computer Networks and Communications
External Links
Snippet
Software‐defined networking offers several benefits for networking by separating the control plane from the data plane. However, networks' scalability, reliability, and availability remain as a big issue. Accordingly, multicontroller architectures are important for SDN‐enabled …
- 238000004891 communication 0 abstract description 21
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5061—Partitioning or combining of resources
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network-specific arrangements or communication protocols supporting networked applications
- H04L67/10—Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network
- H04L67/1002—Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers, e.g. load balancing
- H04L67/1004—Server selection in load balancing
- H04L67/1014—Server selection in load balancing based on the content of a request
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network-specific arrangements or communication protocols supporting networked applications
- H04L67/10—Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network
- H04L67/1002—Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers, e.g. load balancing
- H04L67/1004—Server selection in load balancing
- H04L67/1023—Server selection in load balancing based on other criteria, e.g. hash applied to IP address, specific algorithms or cost
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
- H04L41/08—Configuration management of network or network elements
- H04L41/0803—Configuration setting of network or network elements
- H04L41/0813—Changing of configuration
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network-specific arrangements or communication protocols supporting networked applications
- H04L67/10—Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network
- H04L67/1002—Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers, e.g. load balancing
- H04L67/1031—Controlling of the operation of servers by a load balancer, e.g. adding or removing servers that serve requests
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network-specific arrangements or communication protocols supporting networked applications
- H04L67/10—Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network
- H04L67/104—Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network for peer-to-peer [P2P] networking; Functionalities or architectural details of P2P networks
- H04L67/1087—Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network for peer-to-peer [P2P] networking; Functionalities or architectural details of P2P networks involving cross functional networking aspects
- H04L67/1093—Some peer nodes performing special functions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/54—Interprogramme communication; Intertask communication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
- H04L41/08—Configuration management of network or network elements
- H04L41/0893—Assignment of logical groupings to network elements; Policy based network management or configuration
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/02—Topology update or discovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/54—Store-and-forward switching systems
- H04L12/56—Packet switching systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/04—Interdomain routing, e.g. hierarchical routing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
- H04L41/12—Arrangements for maintenance or administration or management of packet switching networks network topology discovery or management
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. local area networks [LAN], wide area networks [WAN]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/70—Virtual switches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/16—Combinations of two or more digital computers each having at least an arithmetic unit, a programme unit and a register, e.g. for a simultaneous processing of several programmes
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Blial et al. | An overview on SDN architectures with multiple controllers | |
Sarmiento et al. | Decentralized SDN control plane for a distributed cloud-edge infrastructure: A survey | |
Ahmad et al. | Scalability, consistency, reliability and security in SDN controllers: a survey of diverse SDN controllers | |
Singh et al. | A survey and classification of controller placement problem in SDN | |
Hu et al. | Multi-controller based software-defined networking: A survey | |
Zhang et al. | A survey on software defined networking with multiple controllers | |
US10778756B2 (en) | Location of actor resources | |
Benamrane et al. | An East-West interface for distributed SDN control plane: Implementation and evaluation | |
Abdelaziz et al. | Distributed controller clustering in software defined networks | |
Sun et al. | A reliability-aware approach for resource efficient virtual network function deployment | |
Kumar et al. | Energy efficient resource migration based load balance mechanism for high traffic applications IoT | |
Lin et al. | ASIC: An architecture for scalable intra-domain control in OpenFlow | |
Sahoo et al. | RTSM: Response time optimisation during switch migration in software‐defined wide area network | |
Han et al. | ONVisor: Towards a scalable and flexible SDN‐based network virtualization platform on ONOS | |
Cui et al. | Synergistic policy and virtual machine consolidation in cloud data centers | |
Kong et al. | Demonstration of application-driven network slicing and orchestration in optical/packet domains: On-demand vDC expansion for Hadoop MapReduce optimization | |
Al-Mashhadi et al. | Design of cloud computing load balance system based on SDN technology | |
Chaudhary et al. | A comprehensive survey on software‐defined networking for smart communities | |
Bertier et al. | Beyond the clouds: How should next generation utility computing infrastructures be designed? | |
Moeyersons et al. | Pluggable SDN framework for managing heterogeneous SDN networks | |
Jain | Introduction to Software Defined Networking (SDN) | |
Abouelela et al. | Multidomain hierarchical resource allocation for grid applications | |
Llorens-Carrodeguas et al. | A data distribution service in a hierarchical sdn architecture: Implementation and evaluation | |
Zhao et al. | Proactive and hitless vSDN reconfiguration to balance substrate TCAM utilization: From algorithm design to system prototype | |
Zhu et al. | A hybrid reliable heuristic mapping method based on survivable virtual networks for network virtualization |