Taylor et al., 1993 - Google Patents
Integrated inversion channel optoelectronic devices and circuit elements for multifunctional array applicationsTaylor et al., 1993
- Document ID
- 1256872419539060110
- Author
- Taylor G
- Evaldsson P
- Kiely P
- Vang T
- Claisse P
- Daryanani S
- Docter D
- Sargood S
- Cooke P
- Publication year
- Publication venue
- IEEE journal of quantum electronics
External Links
Snippet
An approach to laser-based optoelectronic integration is described. It is shown that by using a single epitaxial growth structure and a common processing sequence, all the electrical and optical devices required for a complete optoelectronic integrated circuit (OEIC) are …
- 230000005693 optoelectronics 0 title abstract description 19
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting lasers (SE-lasers)
- H01S5/183—Surface-emitting lasers (SE-lasers) having a vertical cavity (VCSE-lasers)
- H01S5/18308—Surface-emitting lasers (SE-lasers) having a vertical cavity (VCSE-lasers) having a special structure for lateral current or light confinement
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/062—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
- H01S5/06226—Modulation at ultra-high frequencies
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/062—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
- H01S5/0625—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
- H01S5/06255—Controlling the frequency of the radiation
- H01S5/06256—Controlling the frequency of the radiation with DBR-structure
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/026—Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/04—Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
- H01S5/042—Electrical excitation; Circuits therefor
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4025—Array arrangements, e.g. constituted by discrete laser diodes or laser bar
- H01S5/4031—Edge-emitting structures
- H01S5/4043—Edge-emitting structures with vertically stacked active layers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/42—Arrays of surface emitting lasers
- H01S5/423—Arrays of surface emitting lasers having a vertical cavity
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well, or supperlattice structures, e.g. single quantum well lasers (SQW lasers), multiple quantum well lasers (MQW lasers), graded index separate confinement hetrostructure lasers (GRINSCH lasers)
- H01S5/343—Structure or shape of the active region; Materials used for the active region comprising quantum well, or supperlattice structures, e.g. single quantum well lasers (SQW lasers), multiple quantum well lasers (MQW lasers), graded index separate confinement hetrostructure lasers (GRINSCH lasers) in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/34306—Structure or shape of the active region; Materials used for the active region comprising quantum well, or supperlattice structures, e.g. single quantum well lasers (SQW lasers), multiple quantum well lasers (MQW lasers), graded index separate confinement hetrostructure lasers (GRINSCH lasers) in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000nm, e.g. InP based 1300 and 1500nm lasers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L31/00—Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
-
- G—PHYSICS
- G02—OPTICS
- G02F—DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/015—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wada et al. | Recent progress in optoelectric integrated circuits (OEIC's) | |
Jewell et al. | Surface-emitting microlasers for photonic switching and interchip connections | |
Cheng et al. | Surface-emitting laser-based smart pixels for two-dimensional optical logic and reconfigurable optical interconnections | |
Bar-Chaim et al. | GaAs integrated optoelectronics | |
US5677552A (en) | Optical control circuit for an optical pnpn thyristor | |
US5298762A (en) | Quantum well switching device with stimulated emission capabilities | |
Taylor et al. | Integrated inversion channel optoelectronic devices and circuit elements for multifunctional array applications | |
Feng et al. | Tunneling modulation of transistor lasers: Theory and experiment | |
Kasahara | VSTEP-based smart pixels | |
US4888783A (en) | Semiconductor laser device | |
Zhou et al. | Cascadable, latching photonic switch with high optical gain by the monolithic integration of a vertical-cavity surface-emitting laser and a pn-pn photothyristor | |
Winoto et al. | Transistor laser-integrated photonics for optical logic: Unlocking unique electro-optical integration potential to open up new possibilities for logic processors | |
US7333733B2 (en) | Optoelectronic clock generator producing high frequency optoelectronic pulse trains with variable frequency and variable duty cycle and low jitter | |
Thornton et al. | Unified planar process for fabricating heterojunction bipolar transistors and buried heterostructure lasers utilizing impurity-induced disordering | |
US6128324A (en) | High speed, spatially switching light | |
Matsueda | AlGaAs OEIC transmitters | |
US10283933B1 (en) | Transistor laser electrical and optical bistable switching | |
Evaldsson et al. | Optoelectronic resonant cavity technology based on inversion channel devices | |
US6897993B2 (en) | Electroabsorption modulator, modulator laser device and method for producing an electroabsorption modulator | |
Wilmsen et al. | Smart pixels using the light amplifying optical switch (LAOS) | |
Zhou et al. | Monolithic optoelectronic switch based on the integration of a GaAs/AlGaAs heterojunction bipolar transistor and a GaAs vertical-cavity surface-emitting laser | |
Matsuo et al. | A monolithically integrated smart pixel using an MSM-PD, MESFET's, and a VCSEL | |
US5265111A (en) | Positive feedback device for processing an optical signal | |
Zhou et al. | Versatile bistable optical switches and latching optical logic using integrated photothyristors and surface-emitting lasers | |
SARGENT et al. | Lateral injection lasers |