Gu et al., 2016 - Google Patents
High-performance all-solid-state asymmetric stretchable supercapacitors based on wrinkled MnO 2/CNT and Fe 2 O 3/CNT macrofilmsGu et al., 2016
View HTML- Document ID
- 12547804470862178339
- Author
- Gu T
- Wei B
- Publication year
- Publication venue
- Journal of Materials Chemistry A
External Links
Snippet
High-performance stretchable energy storage devices are urgently needed due to the rapid development of portable, wearable, and stretchable electronics. However, most of the stretchable single-cell energy storage devices suffer from a relatively low operating voltage …
- VASIZKWUTCETSD-UHFFFAOYSA-N manganese(II) oxide   [Mn]=O 0 title description 56
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/13—Ultracapacitors, supercapacitors, double-layer capacitors
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors [EDLCs]; Processes specially adapted for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their materials
- H01G11/32—Carbon-based, e.g. activated carbon materials
- H01G11/36—Nanostructures, e.g. nanofibres, nanotubes or fullerenes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/12—Battery technology
- Y02E60/122—Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/665—Composites
- H01M4/667—Composites in the form of layers, e.g. coatings
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/04—Electrodes or formation of dielectric layers thereon
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/022—Electrolytes, absorbents
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors [EDLCs]; Processes specially adapted for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M14/00—Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gu et al. | High-performance all-solid-state asymmetric stretchable supercapacitors based on wrinkled MnO 2/CNT and Fe 2 O 3/CNT macrofilms | |
Wang et al. | Unraveling and regulating self-discharge behavior of Ti3C2T x MXene-based supercapacitors | |
Xu et al. | Carbon Nanotube Fiber Based Stretchable Wire-Shaped Supercapacitors. | |
Zhou et al. | High-performance hierarchical MnO2/CNT electrode for multifunctional supercapacitors | |
Wu et al. | A flexible asymmetric fibered-supercapacitor based on unique Co3O4@ PPy core-shell nanorod arrays electrode | |
Gu et al. | Fast and stable redox reactions of MnO 2/CNT hybrid electrodes for dynamically stretchable pseudocapacitors | |
Zang et al. | Graphene/polyaniline woven fabric composite films as flexible supercapacitor electrodes | |
Yue et al. | Hierarchical NiCo 2 O 4 nanosheets/nitrogen doped graphene/carbon nanotube film with ultrahigh capacitance and long cycle stability as a flexible binder-free electrode for supercapacitors | |
Yu et al. | Redox electrode materials for supercapatteries | |
Miao et al. | Polyaniline-coated electrospun carbon nanofibers with high mass loading and enhanced capacitive performance as freestanding electrodes for flexible solid-state supercapacitors | |
Li et al. | A high-performance flexible fibre-shaped electrochemical capacitor based on electrochemically reduced graphene oxide | |
Vijeth et al. | Flexible and high energy density solid-state asymmetric supercapacitor based on polythiophene nanocomposites and charcoal | |
Hou et al. | Nanoporous metal based flexible asymmetric pseudocapacitors | |
Liu et al. | A NiAl layered double hydroxide@ carbon nanoparticles hybrid electrode for high-performance asymmetric supercapacitors | |
Yang et al. | Flexible solid-state electrochemical supercapacitors | |
Kurra et al. | All conducting polymer electrodes for asymmetric solid-state supercapacitors | |
Ma et al. | Multilayered paper-like electrodes composed of alternating stacked mesoporous Mo 2 N nanobelts and reduced graphene oxide for flexible all-solid-state supercapacitors | |
Shinde et al. | Morphological modulation of polypyrrole thin films through oxidizing agents and their concurrent effect on supercapacitor performance | |
Li et al. | Facile synthesis and super capacitive behavior of SWNT/MnO2 hybrid films | |
Liao et al. | Vertically-aligned graphene@ Mn 3 O 4 nanosheets for a high-performance flexible all-solid-state symmetric supercapacitor | |
Yang et al. | All-solid-state high-energy asymmetric supercapacitors enabled by three-dimensional mixed-valent MnO x nanospike and graphene electrodes | |
Li et al. | Kirkendall effect induced one-step fabrication of tubular Ag/MnO x nanocomposites for supercapacitor application | |
Xie et al. | Porous poly (3, 4-ethylenedioxythiophene) nanoarray used for flexible supercapacitor | |
US20130258552A1 (en) | Porous graphene film representing excellent electrical properties and method of manufacturing the same | |
Li et al. | Three-dimensional hierarchical self-supported NiCo 2 O 4/carbon nanotube core–shell networks as high performance supercapacitor electrodes |