Adam et al., 2012 - Google Patents
Contention-based estimation of neighbor cardinalityAdam et al., 2012
- Document ID
- 12410922551705657659
- Author
- Adam H
- Yanmaz E
- Bettstetter C
- Publication year
- Publication venue
- IEEE Transactions on Mobile Computing
External Links
Snippet
Several communication protocols and applications require a node to know how many neighboring nodes exhibiting a certain attribute it has. Conventionally, such neighbor information is obtained by explicit message exchange between nodes, which is reliable but …
- 238000004891 communication 0 abstract description 5
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W74/00—Wireless channel access, e.g. scheduled or random access
- H04W74/08—Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
- H04W74/0833—Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
- H04W74/0841—Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure with collision treatment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W72/00—Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation where an allocation plan is defined based on the type of the allocated resource
- H04W72/0446—Wireless resource allocation where an allocation plan is defined based on the type of the allocated resource the resource being a slot, sub-slot or frame
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W72/00—Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
- H04W72/04—Wireless resource allocation
- H04W72/08—Wireless resource allocation where an allocation plan is defined based on quality criteria
- H04W72/085—Wireless resource allocation where an allocation plan is defined based on quality criteria using measured or perceived quality
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W74/00—Wireless channel access, e.g. scheduled or random access
- H04W74/08—Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
- H04W74/0808—Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
- H04W74/0816—Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA carrier sensing with collision avoidance
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W74/00—Wireless channel access, e.g. scheduled or random access
- H04W74/08—Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
- H04W74/0866—Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a dedicated channel for access
- H04W74/0875—Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a dedicated channel for access with assigned priorities based access
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W84/00—Network topologies
- H04W84/18—Self-organizing networks, e.g. ad-hoc networks or sensor networks
- H04W84/20—Master-slave selection or change arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/54—Store-and-forward switching systems
- H04L12/56—Packet switching systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W72/00—Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
- H04W72/12—Dynamic Wireless traffic scheduling; Dynamically scheduled allocation on shared channel
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W56/00—Synchronization arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W68/00—Notification of users, e.g. alerting for incoming communication or change of service
- H04W68/04—Notification of users, e.g. alerting for incoming communication or change of service multi-step notification using statistical or historical mobility data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W52/00—Power Management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
- H04W52/0209—Power saving arrangements in terminal devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/24—Connectivity information management, e.g. connectivity discovery or connectivity update
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network-specific arrangements or communication protocols supporting networked applications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/02—Topology update or discovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7266085B2 (en) | Access and routing protocol for ad hoc network using synchronous collision resolution and node state dissemination | |
RU2375826C2 (en) | Dynamic use of radio resources | |
US20150006633A1 (en) | Operating a cluster of peer-to-peer devices | |
US8031664B2 (en) | Channel management method and channel selection method for wireless node in wireless ad-hoc network | |
US20100091715A1 (en) | Cognitive channel adaptation in wireless sensor networks | |
Pajarinen et al. | Optimizing spatial and temporal reuse in wireless networks by decentralized partially observable Markov decision processes | |
Adam et al. | Contention-based estimation of neighbor cardinality | |
Raza et al. | Statistical learning-based grant-free access for delay-sensitive Internet of Things applications | |
JP5497047B2 (en) | Transmission slot selection for relaxed deterministic backoff method in medium access control | |
Kobbaey et al. | Enhanced collision resolution and throughput analysis for the 802.11 distributed coordination function | |
Kakalou et al. | A reinforcement learning-based cognitive MAC protocol | |
Dzung et al. | To transmit now or not to transmit now | |
US6801538B1 (en) | Method and device for controlling outliers in offered load estimation in a shared medium communication network | |
Cavallero et al. | Coexistence of pull and push communication in wireless access for IoT devices | |
Safdar Malik et al. | Reinforcement Learning‐Based Routing Protocol to Minimize Channel Switching and Interference for Cognitive Radio Networks | |
Xu et al. | Splitting tree algorithm for decentralized detection in sensor networks | |
Wang et al. | Gossip-enabled stochastic channel negotiation for cognitive radio ad hoc networks | |
Qureshi et al. | A genetic fuzzy contention window optimization approach for IEEE 802.11 WLANs | |
Khan et al. | Optimizing MAC layer performance for wireless sensor networks in eHealth | |
Gong et al. | Slot‐hitting ratio‐based TDMA schedule for hybrid energy‐harvesting wireless sensor networks | |
Mubarak et al. | On age of information for remote control of Markov decision processes over multiple access channels | |
Eshet et al. | Randomly ranked mini slots for fair and efficient medium access control in ad hoc networks | |
CN113645594A (en) | Channel resource management method, system, base station and computer readable storage medium | |
Rahimian et al. | An energy-efficient adaptive frameless ALOHA protocol | |
Farag et al. | Timely and efficient information delivery in real-time industrial iot networks |