Çalık et al., 2020 - Google Patents
The effect of heat treatment on mechanical properties of 42CrMo4 steelÇalık et al., 2020
View PDF- Document ID
- 12473841238451272834
- Author
- Çalık A
- Dokuzlar O
- Uçar N
- Publication year
- Publication venue
- Journal of Achievements in Materials and Manufacturing Engineering
External Links
Snippet
Purpose: In this study, the effect of heat treatment on the microstructure and mechanical properties of 42CrMo4 steel were investigated. Design/methodology/approach: The samples were annealed at 860° C for 120 min. followed by oil quenching and then tempered at …
- 229910000831 Steel 0 title abstract description 36
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
- C21D1/00—General methods or devices for heat treatments, e.g. annealing, hardening, quenching, tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/19—Hardening; Quenching with or without subsequent tempering by interrupted quenching
- C21D1/20—Isothermal quenching, e.g. bainitic hardening
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
- C21D1/00—General methods or devices for heat treatments, e.g. annealing, hardening, quenching, tempering
- C21D1/06—Surface hardening
- C21D1/09—Surface hardening by direct application of electrical or wave energy; by particle radiation
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching, tempering, adapted for particular articles; Furnaces therefor
- C21D9/50—Heat treatment, e.g. annealing, hardening, quenching, tempering, adapted for particular articles; Furnaces therefor for welded joints
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
- C21D1/00—General methods or devices for heat treatments, e.g. annealing, hardening, quenching, tempering
- C21D1/34—Methods of heating
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching, tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching, tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/003—Cementite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching, tempering, adapted for particular articles; Furnaces therefor
- C21D9/28—Heat treatment, e.g. annealing, hardening, quenching, tempering, adapted for particular articles; Furnaces therefor for plain shafts
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
- C21D1/00—General methods or devices for heat treatments, e.g. annealing, hardening, quenching, tempering
- C21D1/62—Quenching devices
- C21D1/667—Quenching devices for spray quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
- C21D7/00—Modifying the physical properties of iron or steel by deformation
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
- C21D2221/00—Treating localised areas of an article
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
- C21D11/00—Process control or regulation for heat treatments
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
- C21D6/00—Heat treatment of ferrous alloys
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2719892B2 (en) | Surface carburized stainless steel alloy for high temperature, product made therefrom, and method of manufacturing the same | |
Kandpal et al. | Effect of heat treatment on properties and microstructure of steels | |
Çalık et al. | The effect of heat treatment on mechanical properties of 42CrMo4 steel | |
Laxmi et al. | Quenchant oil viscosity and tempering temperature effect on mechanical properties of 42CrMo4 steel | |
Srivastava et al. | Effect of heat treatment on hardness and toughness of EN8 steel | |
Krishna et al. | Effect of Austempering and Martempering on the Properties of AISI 52100 Steel | |
Giordani et al. | Mechanical and metallurgical evaluation of carburized, conventionally and intensively quenched steels | |
Kokosza et al. | Effect of retained austenite on the fracture toughness of tempered tool steel | |
Abdullah et al. | Study of low carbon steel in rapid cooling process: A short review | |
Nkhoma et al. | Effect of adding Cr, Ni and Mo on quench and temper microstructure and mechanical properties of a Si-Mn spring steel | |
Meshkabadi et al. | Investigation on Microstructure, Hardness and Fracture Energy of AISI H13 Hot Work Tool Steel by Cyclic Heat Treatment | |
Atay et al. | Investigation of the Microstructure and Mechanical Properties of Heat-Treated 42CrMoS4 Steel | |
Skubisz et al. | Warm-forging characteristics and microstructural response of medium-carbon high-strength steels for high-duty components | |
Ba³a et al. | Continuous heating from as-quenched state in a new hot-work steel | |
Suresh | Investigation of Heat Treatment on Mechanical Properties of Medium Carbon Steel | |
Tartaglia | The effects of martensite content on the mechanical properties of quenched and tempered 0.2% C-Ni-Cr-Mo steels | |
Kurt et al. | Mechanical changes and analysis of heat-treated 4140 steel with Taguchi method and ANOVA | |
Verma et al. | Improvement in the wear resistance and mechanical properties of carburized mild steel by varying carburization temperature and constant tempering temperature | |
Saalfeld et al. | Thermal stability of residual stresses in differently deep rolled surface layers of steel SAE 1045 | |
Maminska et al. | A new bainitic forging steel for surface induction hardened components | |
Sazali et al. | A mini review on low carbon steel in rapid cooling process | |
Hariningsih et al. | Effect of hardening and tempering on the microstructure and mechanical properties of the tapered-forged leaf spring steel | |
Khotinov et al. | The impact of strain aging on the mechanical properties of steel 37KhGF | |
Alabi Abdulmumin et al. | Effect of Water Temperature on the Mechanical Properties of Water Quenched Medium Carbon Steel | |
Izotov et al. | Effect of the pearlitic steel structure on the mechanical properties and fracture upon loading by static bending |