Shen et al., 2023 - Google Patents
Core design and neutronic analysis of a long-life LBE-cooled fast reactor NCLFR-OilShen et al., 2023
- Document ID
- 12469261174451196363
- Author
- Shen S
- Wang W
- Chen H
- Duan W
- Zhang K
- Shi K
- Chen Z
- Publication year
- Publication venue
- Progress in Nuclear Energy
External Links
Snippet
The exploitation of heavy oil reservoirs calls for the implementation of thermal recovery techniques. To provide the heat source for oil recovery energy system, NCLFR-Oil, a Natural Circulation Lead-bismuth Fast Reactor was designed for heavy oil extraction, with a …
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
- Y02E30/40—Other aspects relating to nuclear fission
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
- Y02E30/34—Fast breeder reactors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
- Y02E30/38—Fuel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
- Y02E30/33—Gas cooled reactors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
- Y02E30/39—Control of nuclear reactions
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C3/00—Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
- G21C3/02—Fuel elements
- G21C3/04—Constructional details
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C3/00—Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
- G21C3/30—Assemblies of a number of fuel elements in the form of a rigid unit
- G21C3/32—Bundles of parallel pin-, rod-, or tube-shaped fuel elements
- G21C3/326—Bundles of parallel pin-, rod-, or tube-shaped fuel elements comprising fuel elements of different composition; comprising, in addition to the fuel elements, other pin-, rod-, or tube-shaped elements, e.g. control rods, grid support rods, fertile rods, poison rods or dummy rods
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C1/00—Reactors
- G21C1/02—Fast fission reactors, i.e. reactors not using a moderator; Metal cooled reactors; Fast breeders
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21Y—INDEXING SCHEME RELATING TO NUCLEAR REACTORS, POWER PLANTS AND EXPLOSIVES, TO PROTECTION AGAINST RADIATION, TO THE TREATMENT OF RADIOACTIVELY CONTAMINATED MATERIAL, TO APPLICATIONS OF RADIOACTIVE SOURCES AND TO THE UTILISATION OF COSMIC RADIATION
- G21Y2004/00—SOLUTION
- G21Y2004/10—Compositions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C1/00—Reactors
- G21C1/04—Thermal reactors; Epithermal reactors
- G21C1/06—Heterogeneous reactors, i.e. in which fuel and moderator are separated
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C7/00—Control of nuclear reaction
- G21C7/30—Control of nuclear reaction by displacement of the reactor fuel or fuel elements
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21Y—INDEXING SCHEME RELATING TO NUCLEAR REACTORS, POWER PLANTS AND EXPLOSIVES, TO PROTECTION AGAINST RADIATION, TO THE TREATMENT OF RADIOACTIVELY CONTAMINATED MATERIAL, TO APPLICATIONS OF RADIOACTIVE SOURCES AND TO THE UTILISATION OF COSMIC RADIATION
- G21Y2002/00—PROBLEM
- G21Y2002/201—Inadequate efficiency
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C15/00—Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C5/00—Moderator or core structure; Selection of materials for use as moderator
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C19/00—Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21D—NUCLEAR POWER PLANT
- G21D3/00—Control of nuclear power plant
- G21D3/001—Computer implemented control
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21D—NUCLEAR POWER PLANT
- G21D3/00—Control of nuclear power plant
- G21D3/08—Regulation of any parameters in the plant
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C17/00—Monitoring; Testing ; Maintaining
- G21C17/02—Devices or arrangements for monitoring coolant or moderator
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sadegh-Noedoost et al. | Investigations of the fresh-core cycle-length and the average fuel depletion analysis of the NuScale core | |
Colton et al. | Lattice physics evaluation of 35-element mixed oxide thorium-based fuels for use in pressure tube heavy water reactors | |
Csom et al. | Thorium as an alternative fuel for SCWRs | |
Pino-Medina et al. | Neutronic analysis of the NuScale core using accident tolerant fuels with different coating materials | |
Tsige-Tamirat | Neutronics assessment of the use of thorium fuels in current pressurized water reactors | |
Awan et al. | Neutronic design and evaluation of a PWR fuel assembly with accident tolerant-Fully Ceramic Micro-Encapsulated (AT-FCM) fuel | |
Awan et al. | Neutronic design study of a small modular IPWR loaded with accident tolerant-fully ceramic micro-encapsulated (AT-FCM) fuel | |
El Kheiri et al. | Neutronic investigation of prospective dual-cooled micro-heterogeneous duplex fuel for small modular long-life reactors: Assembly level design and analysis | |
Mohamed et al. | Investigating the possibility of using a mixture of thorium with different fissile materials as a fuel in TRISO particles for the PBMR-400 reactor | |
Ishraq et al. | Neutronic evaluation of diverse fuel configurations for the supercritical water reactor (SCWR) core | |
Kumar et al. | Neutronic performance of a thorium based mixed oxide fuel in a burner sodium-cooled fast reactor | |
Zou et al. | Ameliorating the positive temperature feedback coefficient for an MSR fueled with transuranic elements | |
Nabila et al. | Neutronic and fuel cycle performance of LEU fuel with different means of excess reactivity control: Impact of neutron leakage and refueling scheme | |
Wang | Optimization of a seed and blanket thorium-uranium fuel cycle for pressurized water reactors | |
Zhang et al. | Conceptual design of an innovative reduced moderation thorium‐fueled small modular reactor with heavy‐water coolant | |
Faghihi et al. | Shut-down margin study for the next generation VVER-1000 reactor including 13× 13 hexagonal annular assemblies | |
Shen et al. | Core design and neutronic analysis of a long-life LBE-cooled fast reactor NCLFR-Oil | |
Chaudri et al. | Coupled neutronics/thermal hydraulics evaluation for thorium based fuels in thermal spectrum SCWR | |
Attom et al. | Neutronic analysis of thorium S&B fuel blocks with different driver fuels in advanced Block-type HTRs | |
Hong et al. | A neutronic design study of lead-bismuth-cooled small and safe ultra-long-life cores | |
Jagannathan et al. | ATBR—a thorium breeder reactor concept for early induction of thorium in an enriched uranium reactor | |
Park et al. | A preliminary design study for the HYPER system | |
Mulder et al. | Characteristics of a different fuel cycle in a PBMR-400 for burning reactor grade plutonium | |
Mohamed et al. | Use of Thorium-Plutonium MOX in the inner pins of CANDU fuel bundles | |
Xu et al. | Neutron spectrum effects on burnup, reactivity, and isotopics in UO2/H2O lattices |