Xie, 2013 - Google Patents
Emerging memory technologies: design, architecture, and applicationsXie, 2013
- Document ID
- 12394591794287706047
- Author
- Xie Y
- Publication year
External Links
Snippet
This book explores the design implications of emerging, non-volatile memory (NVM) technologies on future computer memory hierarchy architecture designs. Since NVM technologies combine the speed of SRAM, the density of DRAM, and the non-volatility of …
- 230000015654 memory 0 title abstract description 141
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00 - G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00 - G11C25/00 using resistance random access memory [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/0069—Writing or programming circuits or methods
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00 - G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00 - G11C25/00 using resistance random access memory [RRAM] elements
- G11C13/0004—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00 - G11C25/00 using resistance random access memory [RRAM] elements comprising amorphous/crystalline phase transition cells
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/08—Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
- G06F12/0802—Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/41—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
- G11C11/412—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger using field-effect transistors only
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/0223—User address space allocation, e.g. contiguous or non contiguous base addressing
- G06F12/023—Free address space management
- G06F12/0238—Free address space management in non-volatile memory
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/56—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/70—Resistive array aspects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Error detection; Error correction; Monitoring responding to the occurence of a fault, e.g. fault tolerance
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C14/00—Digital stores characterised by arrangements of cells having volatile and non-volatile storage properties for back-up when the power is down
- G11C14/0054—Digital stores characterised by arrangements of cells having volatile and non-volatile storage properties for back-up when the power is down in which the volatile element is a SRAM cell
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C8/00—Arrangements for selecting an address in a digital store
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xie | Emerging memory technologies: design, architecture, and applications | |
Xie | Modeling, architecture, and applications for emerging memory technologies | |
Zhou et al. | A durable and energy efficient main memory using phase change memory technology | |
Dong et al. | Nvsim: A circuit-level performance, energy, and area model for emerging nonvolatile memory | |
Boukhobza et al. | Emerging NVM: A survey on architectural integration and research challenges | |
Qureshi et al. | Phase change memory: From devices to systems | |
Lee et al. | Phase-change technology and the future of main memory | |
Xue et al. | Emerging non-volatile memories: Opportunities and challenges | |
Venkatesan et al. | TapeCache: A high density, energy efficient cache based on domain wall memory | |
Sun et al. | A hybrid solid-state storage architecture for the performance, energy consumption, and lifetime improvement | |
Xie | Future memory and interconnect technologies | |
Xie et al. | Emerging Memory Technologies. | |
US9899081B2 (en) | Resistive memory device and a memory system including the same | |
Sun et al. | A frequent-value based PRAM memory architecture | |
Sun et al. | Memory that never forgets: Emerging nonvolatile memory and the implication for architecture design | |
Jung et al. | Design of a large-scale storage-class RRAM system | |
Chen et al. | Recent technology advances of emerging memories | |
Wang et al. | Nonvolatile CBRAM-crossbar-based 3-D-integrated hybrid memory for data retention | |
Thakkar et al. | DyPhase: A dynamic phase change memory architecture with symmetric write latency and restorable endurance | |
Palangappa et al. | WOM-code solutions for low latency and high endurance in phase change memory | |
Zhao et al. | Memory and storage system design with nonvolatile memory technologies | |
Smullen | Designing giga-scale memory systems with STT-RAM | |
Sun | Exploring memory hierarchy design with emerging memory technologies | |
Wu et al. | Aliens: A novel hybrid architecture for resistive random-access memory | |
US20230260573A1 (en) | Spike based programming of a memory cell to reset state |