[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Dong et al., 2021 - Google Patents

Prediction of binding free energy of protein–ligand complexes with a hybrid molecular mechanics/generalized born surface area and machine learning method

Dong et al., 2021

View HTML @Full View
Document ID
12109477161225703022
Author
Dong L
Qu X
Zhao Y
Wang B
Publication year
Publication venue
ACS omega

External Links

Snippet

Accurate prediction of protein–ligand binding free energies is important in enzyme engineering and drug discovery. The molecular mechanics/generalized Born surface area (MM/GBSA) approach is widely used to estimate ligand-binding affinities, but its …
Continue reading at pubs.acs.org (HTML) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/70Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds
    • G06F19/706Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds for drug design with the emphasis on a therapeutic agent, e.g. ligand-biological target interactions, pharmacophore generation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/10Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
    • G06F19/16Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for molecular structure, e.g. structure alignment, structural or functional relations, protein folding, domain topologies, drug targeting using structure data, involving two-dimensional or three-dimensional structures
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/10Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
    • G06F19/12Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for modelling or simulation in systems biology, e.g. probabilistic or dynamic models, gene-regulatory networks, protein interaction networks or metabolic networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/10Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
    • G06F19/18Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for functional genomics or proteomics, e.g. genotype-phenotype associations, linkage disequilibrium, population genetics, binding site identification, mutagenesis, genotyping or genome annotation, protein-protein interactions or protein-nucleic acid interactions
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/70Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds
    • G06F19/704Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds for prediction of properties of compounds, e.g. calculating and selecting molecular descriptors, details related to the development of SAR/QSAR/QSPR models, ADME/Tox models or PK/PD models
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/10Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
    • G06F19/28Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for programming tools or database systems, e.g. ontologies, heterogeneous data integration, data warehousing or computing architectures
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/10Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
    • G06F19/22Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for sequence comparison involving nucleotides or amino acids, e.g. homology search, motif or SNP [Single-Nucleotide Polymorphism] discovery or sequence alignment
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/10Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
    • G06F19/24Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for machine learning, data mining or biostatistics, e.g. pattern finding, knowledge discovery, rule extraction, correlation, clustering or classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/10Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
    • G06F19/20Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for hybridisation or gene expression, e.g. microarrays, sequencing by hybridisation, normalisation, profiling, noise correction models, expression ratio estimation, probe design or probe optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/70Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds
    • G06F19/707Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds using machine learning, data mining or chemometrics, e.g. pattern recognition, knowledge discovery, rule extraction, correlation, clustering or classification, chemical name to structure conversion
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/70Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds
    • G06F19/705Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds for database search of chemical structures, e.g. full structure search, substructure search, similarity search, pharmacophore search, 3D structure search
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/70Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds
    • G06F19/708Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds for data visualisation, e.g. molecular structure representations, graphics generation, display of maps or networks or other visual representations
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/70Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds
    • G06F19/701Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds for molecular modelling, e.g. calculation and theoretical details of quantum mechanics, molecular mechanics, molecular dynamics, Monte Carlo methods, conformational analysis or the like
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/30Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
    • G06F19/34Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring

Similar Documents

Publication Publication Date Title
Jiménez et al. K deep: protein–ligand absolute binding affinity prediction via 3d-convolutional neural networks
Shen et al. Boosting protein–ligand binding pose prediction and virtual screening based on residue–atom distance likelihood potential and graph transformer
Ashtawy et al. Task-specific scoring functions for predicting ligand binding poses and affinity and for screening enrichment
Liu et al. Classification of current scoring functions
Ragoza et al. Protein–ligand scoring with convolutional neural networks
Dong et al. Prediction of binding free energy of protein–ligand complexes with a hybrid molecular mechanics/generalized born surface area and machine learning method
Tian et al. Assessing an ensemble docking-based virtual screening strategy for kinase targets by considering protein flexibility
Zhu et al. Binding affinity prediction by pairwise function based on neural network
Singh et al. AADS-An automated active site identification, docking, and scoring protocol for protein targets based on physicochemical descriptors
Verma et al. 3D-QSAR in drug design-a review
Cross et al. Comparison of several molecular docking programs: pose prediction and virtual screening accuracy
Ma et al. Structure-based de novo molecular generator combined with artificial intelligence and docking simulations
Tran-Nguyen et al. True accuracy of fast scoring functions to predict high-throughput screening data from docking poses: the simpler the better
Sulimov et al. Application of the docking program SOL for CSAR benchmark
Kalaszi et al. Screen3D: a novel fully flexible high-throughput shape-similarity search method
Ding et al. Characterization of small molecule binding. I. Accurate identification of strong inhibitors in virtual screening
Zheng et al. Ligand identification scoring algorithm (LISA)
Gusev et al. Active learning guided drug design lead optimization based on relative binding free energy modeling
Huang et al. Scoring and lessons learned with the CSAR benchmark using an improved iterative knowledge-based scoring function
Kramer et al. Global free energy scoring functions based on distance-dependent atom-type pair descriptors
Pan et al. AA-score: a new scoring function based on amino acid-specific interaction for molecular docking
Sharma et al. Chemoinformatics and bioinformatics in the pharmaceutical sciences
Jiang et al. Guiding conventional protein–ligand docking software with convolutional neural networks
Zheng et al. The movable type method applied to protein–ligand binding
Dong et al. Equivariant flexible modeling of the protein–ligand binding pose with geometric deep learning