[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Zhao et al., 2016 - Google Patents

Surface structural transition induced by gradient polyanion‐doping in Li‐rich layered oxides: implications for enhanced electrochemical performance

Zhao et al., 2016

Document ID
12145068297569750166
Author
Zhao Y
Liu J
Wang S
Ji R
Xia Q
Ding Z
Wei W
Liu Y
Wang P
Ivey D
Publication year
Publication venue
Advanced Functional Materials

External Links

Snippet

Lithium‐rich layered oxides (LLOs) exhibit great potential as high‐capacity cathode materials for lithium‐ion batteries, but usually suffer from capacity/voltage fade during electrochemical cycling. Herein, a gradient polyanion‐doping strategy is developed to …
Continue reading at onlinelibrary.wiley.com (other versions)

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/12Battery technology
    • Y02E60/122Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/13Ultracapacitors, supercapacitors, double-layer capacitors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect

Similar Documents

Publication Publication Date Title
Zhao et al. Surface structural transition induced by gradient polyanion‐doping in Li‐rich layered oxides: implications for enhanced electrochemical performance
Zhao et al. Improving the Ni-rich LiNi0. 5Co0. 2Mn0. 3O2 cathode properties at high operating voltage by double coating layer of Al2O3 and AlPO4
Ma et al. Enhanced electrochemical performance of LiNi 0.8 Co 0.1 Mn 0.1 O 2 cathode via wet-chemical coating of MgO
Noh et al. Optimized synthetic conditions of LiNi0. 5Co0. 2Mn0. 3O2 cathode materials for high rate lithium batteries via co-precipitation method
Yu et al. Understanding the rate capability of high‐energy‐density Li‐rich layered Li1. 2Ni0. 15Co0. 1Mn0. 55O2 cathode materials
Ming et al. Effect of Nb and F co-doping on Li1. 2Mn0. 54Ni0. 13Co0. 13O2 cathode material for high-performance lithium-ion batteries
Li et al. A hydrolysis-hydrothermal route for the synthesis of ultrathin LiAlO 2-inlaid LiNi 0.5 Co 0.2 Mn 0.3 O 2 as a high-performance cathode material for lithium ion batteries
Chen et al. Improve the structure and electrochemical performance of LiNi0. 6Co0. 2Mn0. 2O2 cathode material by nano-Al2O3 ultrasonic coating
Pan et al. Suppressing the voltage decay and enhancing the electrochemical performance of Li1. 2Mn0. 54Co0. 13Ni0. 13O2 by multifunctional Nb2O5 coating
Xiao et al. Effect of MgO and TiO2 coating on the electrochemical performance of Li‐rich cathode materials for lithium‐ion batteries
Chen et al. Nitrogen-doped carbon coated LiNi0. 6Co0. 2Mn0. 2O2 cathode with enhanced electrochemical performance for Li-Ion batteries
Deng et al. Study of carbon surface-modified Li [Li 0.2 Mn 0.54 Ni 0.13 Co 0.13] O 2 for high-capacity lithium ion battery cathode
Li et al. A facile method to enhance electrochemical performance of high-nickel cathode material Li (Ni 0.8 Co 0.1 Mn 0.1) O 2 via Ti doping
Wu et al. Surface modification of a cobalt-free layered Li [Li 0.2 Fe 0.1 Ni 0.15 Mn 0.55] O 2 oxide with the FePO 4/Li 3 PO 4 composite as the cathode for lithium-ion batteries
Li et al. NH4F surface modification of Li-rich layered cathode materials
Jin et al. Electrochemically active MnO2 coated Li1. 2Ni0. 18Co0. 04Mn0. 58O2 cathode with highly improved initial coulombic efficiency
Dai et al. Improved cycling performance of LiNi 0.8 Co 0.15 Al 0.05 O 2/Al 2 O 3 with core-shell structure synthesized by a heterogeneous nucleation-and-growth process
Choi et al. Effect of Na2SO4 Coating layer on Nickel‐Rich Li (NixCoyMnz) O2 Cathode Materials for Lithium‐Ion Batteries
Wang et al. Superior electrochemical and kinetics performance of LiNi0. 8Co0. 15Al0. 05O2 cathode by neodymium synergistic modifying for lithium ion batteries
Ryu et al. Electrochemical properties of nanosized Li-rich layered oxide as positive electrode materials for Li-Ion batteries
Li et al. Surface-modified Li [Li 0.2 Mn 0.54 Ni 0.13 Co 0.13] O 2 nanoparticles with LaF 3 as cathode for Li-ion battery
Ma et al. Al2O3 coated single-crystalline hexagonal nanosheets of LiNi0. 6Co0. 2Mn0. 2O2 cathode materials for the high-performance lithium-ion batteries
Li et al. ZnO-coated LiMn 2 O 4 cathode material for lithium-ion batteries synthesized by a combustion method
Gao et al. Improved cycle performance of nitrogen and phosphorus co-doped carbon coatings on lithium nickel cobalt aluminum oxide battery material
Hong et al. Nano SIMS characterization of boron-and aluminum-coated LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode materials for lithium secondary ion batteries