Li et al., 2005 - Google Patents
Schedulability criterion and performance analysis of coordinated schedulersLi et al., 2005
- Document ID
- 11815176701416545490
- Author
- Li C
- Knightly E
- Publication year
- Publication venue
- IEEE/ACM Transactions on Networking
External Links
Snippet
Inter-server coordinated scheduling is a mechanism for downstream nodes to increase or decrease a packet's priority according to the congestion incurred at upstream nodes. In this paper, we derive an end-to-end schedulability condition for a broad class of coordinated …
- 238000004458 analytical method 0 title description 11
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/54—Store-and-forward switching systems
- H04L12/56—Packet switching systems
- H04L12/5695—Admission control; Resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/54—Store-and-forward switching systems
- H04L12/56—Packet switching systems
- H04L12/5601—Transfer mode dependent, e.g. ATM
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/24—Flow control or congestion control depending on the type of traffic, e.g. priority or quality of service [QoS]
- H04L47/2441—Flow classification
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/54—Store-and-forward switching systems
- H04L12/56—Packet switching systems
- H04L12/5693—Queue scheduling in packet switching networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/24—Flow control or congestion control depending on the type of traffic, e.g. priority or quality of service [QoS]
- H04L47/2458—Modification of priorities while in transit
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/24—Flow control or congestion control depending on the type of traffic, e.g. priority or quality of service [QoS]
- H04L47/2408—Different services, e.g. type of service [ToS]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/70—Admission control or resource allocation
- H04L47/80—Actions related to the nature of the flow or the user
- H04L47/805—QOS or priority aware
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/70—Admission control or resource allocation
- H04L47/80—Actions related to the nature of the flow or the user
- H04L47/801—Real time traffic
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/12—Congestion avoidance or recovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/70—Admission control or resource allocation
- H04L47/82—Miscellaneous aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/22—Traffic shaping
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/20—Policing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/50—Queue scheduling
- H04L47/62—General aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/15—Flow control or congestion control in relation to multipoint traffic
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/70—Admission control or resource allocation
- H04L47/76—Reallocation of resources, renegotiation of resources, e.g. in-call
- H04L47/762—Reallocation of resources, renegotiation of resources, e.g. in-call triggered by the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
- H04L41/50—Network service management, i.e. ensuring proper service fulfillment according to an agreement or contract between two parties, e.g. between an IT-provider and a customer
- H04L41/5019—Ensuring SLA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/30—Special provisions for routing multiclass traffic
- H04L45/302—Route determination based on requested QoS
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
- H04L41/50—Network service management, i.e. ensuring proper service fulfillment according to an agreement or contract between two parties, e.g. between an IT-provider and a customer
- H04L41/5003—Managing service level agreement [SLA] or interaction between SLA and quality of service [QoS]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W72/00—Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
- H04W72/12—Dynamic Wireless traffic scheduling; Dynamically scheduled allocation on shared channel
- H04W72/1205—Schedule definition, set-up or creation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20150312163A1 (en) | Method to achieve bounded buffer sizes and quality of service guarantees in the internet network | |
Liu et al. | Towards large-scale deterministic IP networks | |
WO2017024824A1 (en) | Aggregated link-based traffic management method and device | |
Li et al. | Coordinated multihop scheduling: A framework for end-to-end services | |
Ramabhadran et al. | The stratified round robin scheduler: design, analysis and implementation | |
US12028265B2 (en) | Software-defined guaranteed-latency networking | |
Wang et al. | Pursuing differentiated services in a SDN-based IoT-oriented pub/sub system | |
Li et al. | Schedulability criterion and performance analysis of coordinated schedulers | |
Joung et al. | Flow‐Based QoS Management Architectures for the Next Generation Network | |
Ziviani et al. | Evaluating the expedited forwarding of voice traffic in a differentiated services network | |
Mansour et al. | Assessing queue management strategies to enhance quality of service in MPLS VPN networks | |
Sun et al. | Coordinated aggregate scheduling for improving end-to-end delay performance | |
Zhong et al. | Performance analysis of application-based QoS control in software-defined wireless networks | |
Jiwasurat et al. | Hierarchical shaped deficit round-robin scheduling | |
Pang et al. | An admission control scheme to provide end-to-end statistical QoS provision in IP networks | |
Jiang | Link-based fair aggregation: A simple approach to scalable support of per-flow service guarantees | |
Wang et al. | Toward statistical QoS guarantees in a differentiated services network | |
Li et al. | Schedulability criterion and performance analysis of coordinated schedulers | |
Khawam et al. | Opportunistic weighted fair queueing | |
Vutukury et al. | SMART: A scalable multipath architecture for intra-domain QoS provisioning | |
Bakiras et al. | Quality of service support in differentiated services packet networks | |
Kaur et al. | Providing deterministic end-to-end fairness guarantees in core-stateless networks | |
Fidler | On the impacts of traffic shaping on end-to-end delay bounds in aggregate scheduling networks | |
Bolla et al. | Analytical/simulation optimization system for access control and bandwidth allocation in IP networks with QoS | |
Hong et al. | A multichannel scheduler for high-speed wireless backhaul links with packet concatenation |