[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Zhang et al., 2012 - Google Patents

Driver drowsiness recognition based on computer vision technology

Zhang et al., 2012

View PDF
Document ID
11715628840469404754
Author
Zhang W
Cheng B
Lin Y
Publication year
Publication venue
Tsinghua Science and Technology

External Links

Snippet

Driver drowsiness is one of the major causes of traffic accidents. This paper presents a nonintrusive drowsiness recognition method using eye-tracking and image processing. A robust eye detection algorithm is introduced to address the problems caused by changes in …
Continue reading at ieeexplore.ieee.org (PDF) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00221Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
    • G06K9/00268Feature extraction; Face representation
    • G06K9/00281Local features and components; Facial parts ; Occluding parts, e.g. glasses; Geometrical relationships
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • G06K9/6232Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
    • G06K9/6247Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00221Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
    • G06K9/00228Detection; Localisation; Normalisation
    • G06K9/00248Detection; Localisation; Normalisation using facial parts and geometric relationships
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6268Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00221Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
    • G06K9/00268Feature extraction; Face representation
    • G06K9/00275Holistic features and representations, i.e. based on the facial image taken as a whole
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00221Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
    • G06K9/00288Classification, e.g. identification
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00597Acquiring or recognising eyes, e.g. iris verification
    • G06K9/00604Acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00362Recognising human body or animal bodies, e.g. vehicle occupant, pedestrian; Recognising body parts, e.g. hand
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/36Image preprocessing, i.e. processing the image information without deciding about the identity of the image
    • G06K9/46Extraction of features or characteristics of the image
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00335Recognising movements or behaviour, e.g. recognition of gestures, dynamic facial expressions; Lip-reading
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00624Recognising scenes, i.e. recognition of a whole field of perception; recognising scene-specific objects
    • G06K9/00832Recognising scenes inside a vehicle, e.g. related to occupancy, driver state, inner lighting conditions

Similar Documents

Publication Publication Date Title
Zhang et al. Driver drowsiness recognition based on computer vision technology
Ibrahim et al. Embedded system for eye blink detection using machine learning technique
Du et al. A multimodal fusion fatigue driving detection method based on heart rate and PERCLOS
Teyeb et al. A novel approach for drowsy driver detection using head posture estimation and eyes recognition system based on wavelet network
Celona et al. A multi-task CNN framework for driver face monitoring
Wang et al. Continuous authentication using EEG and face images for trusted autonomous systems
Kulkarni et al. A review paper on monitoring driver distraction in real time using computer vision system
Huda et al. Mobile-based driver sleepiness detection using facial landmarks and analysis of EAR values
Rigane et al. A fuzzy based method for driver drowsiness detection
Zhao et al. Deep convolutional neural network for drowsy student state detection
Pauly et al. Non intrusive eye blink detection from low resolution images using HOG-SVM classifier
Phuong et al. An eye blink detection technique in video surveillance based on eye aspect ratio
Flores-Monroy et al. Visual-based real time driver drowsiness detection system using CNN
AlKishri et al. Enhanced image processing and fuzzy logic approach for optimizing driver drowsiness detection
Liu et al. A practical driver fatigue detection algorithm based on eye state
Fan et al. Nonintrusive driver fatigue detection
JP2024133228A (en) Sorting Device
Sharma et al. Deep convolutional network based real time fatigue detection and drowsiness alertness system
Du et al. Online vigilance analysis combining video and electrooculography features
Lollett et al. Driver’s drowsiness classifier using a single-camera robust to mask-wearing situations using an eyelid, lower-face contour, and chest movement feature vector gru-based model
Gong et al. Face detection and status analysis algorithms in day and night enivironments
Wang et al. Research on driver fatigue state detection method based on deep learning
Gupta et al. Real time driver drowsiness detecion using transfer learning
Bano et al. AN EFFICIENT DETECTION APPROACH OF DRIVER-DROWSINESS USING MULTIPLE CONVOLUTIONAL HAAR CASCADE KERNELIZED CNN (MCHC-KCNN) ALGORITHM
Peddarapu et al. Raspberry Pi-Based Driver Drowsiness Detection