Zhang et al., 2012 - Google Patents
Driver drowsiness recognition based on computer vision technologyZhang et al., 2012
View PDF- Document ID
- 11715628840469404754
- Author
- Zhang W
- Cheng B
- Lin Y
- Publication year
- Publication venue
- Tsinghua Science and Technology
External Links
Snippet
Driver drowsiness is one of the major causes of traffic accidents. This paper presents a nonintrusive drowsiness recognition method using eye-tracking and image processing. A robust eye detection algorithm is introduced to address the problems caused by changes in …
- 206010041349 Somnolence 0 title abstract description 59
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00221—Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
- G06K9/00268—Feature extraction; Face representation
- G06K9/00281—Local features and components; Facial parts ; Occluding parts, e.g. glasses; Geometrical relationships
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6232—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
- G06K9/6247—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00221—Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
- G06K9/00228—Detection; Localisation; Normalisation
- G06K9/00248—Detection; Localisation; Normalisation using facial parts and geometric relationships
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00221—Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
- G06K9/00268—Feature extraction; Face representation
- G06K9/00275—Holistic features and representations, i.e. based on the facial image taken as a whole
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00221—Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
- G06K9/00288—Classification, e.g. identification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00597—Acquiring or recognising eyes, e.g. iris verification
- G06K9/00604—Acquisition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00362—Recognising human body or animal bodies, e.g. vehicle occupant, pedestrian; Recognising body parts, e.g. hand
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00335—Recognising movements or behaviour, e.g. recognition of gestures, dynamic facial expressions; Lip-reading
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00624—Recognising scenes, i.e. recognition of a whole field of perception; recognising scene-specific objects
- G06K9/00832—Recognising scenes inside a vehicle, e.g. related to occupancy, driver state, inner lighting conditions
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Driver drowsiness recognition based on computer vision technology | |
Ibrahim et al. | Embedded system for eye blink detection using machine learning technique | |
Du et al. | A multimodal fusion fatigue driving detection method based on heart rate and PERCLOS | |
Teyeb et al. | A novel approach for drowsy driver detection using head posture estimation and eyes recognition system based on wavelet network | |
Celona et al. | A multi-task CNN framework for driver face monitoring | |
Wang et al. | Continuous authentication using EEG and face images for trusted autonomous systems | |
Kulkarni et al. | A review paper on monitoring driver distraction in real time using computer vision system | |
Huda et al. | Mobile-based driver sleepiness detection using facial landmarks and analysis of EAR values | |
Rigane et al. | A fuzzy based method for driver drowsiness detection | |
Zhao et al. | Deep convolutional neural network for drowsy student state detection | |
Pauly et al. | Non intrusive eye blink detection from low resolution images using HOG-SVM classifier | |
Phuong et al. | An eye blink detection technique in video surveillance based on eye aspect ratio | |
Flores-Monroy et al. | Visual-based real time driver drowsiness detection system using CNN | |
AlKishri et al. | Enhanced image processing and fuzzy logic approach for optimizing driver drowsiness detection | |
Liu et al. | A practical driver fatigue detection algorithm based on eye state | |
Fan et al. | Nonintrusive driver fatigue detection | |
JP2024133228A (en) | Sorting Device | |
Sharma et al. | Deep convolutional network based real time fatigue detection and drowsiness alertness system | |
Du et al. | Online vigilance analysis combining video and electrooculography features | |
Lollett et al. | Driver’s drowsiness classifier using a single-camera robust to mask-wearing situations using an eyelid, lower-face contour, and chest movement feature vector gru-based model | |
Gong et al. | Face detection and status analysis algorithms in day and night enivironments | |
Wang et al. | Research on driver fatigue state detection method based on deep learning | |
Gupta et al. | Real time driver drowsiness detecion using transfer learning | |
Bano et al. | AN EFFICIENT DETECTION APPROACH OF DRIVER-DROWSINESS USING MULTIPLE CONVOLUTIONAL HAAR CASCADE KERNELIZED CNN (MCHC-KCNN) ALGORITHM | |
Peddarapu et al. | Raspberry Pi-Based Driver Drowsiness Detection |