Xu et al., 2017 - Google Patents
Electrochemical performance of highly active ceramic symmetrical electrode La0. 3Sr0. 7Ti0. 3Fe0. 7O3-δ-CeO2 for reversible solid oxide cellsXu et al., 2017
- Document ID
- 11671747281885453868
- Author
- Xu J
- Zhou X
- Cheng J
- Pan L
- Wu M
- Dong X
- Sun K
- Publication year
- Publication venue
- Electrochimica Acta
External Links
Snippet
The electrolyte supported cells with the La 0.3 Sr 0.7 Ti 0.3 Fe 0.7 O 3-δ (LSTF0. 7)-CeO 2| ScSZ (scandia-stabilized zirconia)| La 0.3 Sr 0.7 Ti 0.3 Fe 0.7 O 3-δ-CeO 2 symmetrical configuration are fabricated by infiltration method and investigated as reversible solid oxide …
- 230000002441 reversible 0 title abstract description 13
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
- Y02E60/52—Fuel cells characterised by type or design
- Y02E60/525—Solid Oxide Fuel Cells [SOFC]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
- Y02E60/52—Fuel cells characterised by type or design
- Y02E60/521—Proton Exchange Membrane Fuel Cells [PEMFC]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9016—Oxides, hydroxides or oxygenated metallic salts
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/124—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
- H01M8/1246—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9041—Metals or alloys
- H01M4/905—Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
- H01M4/9066—Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/1213—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
- H01M8/1226—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M2004/8678—Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8647—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
- H01M4/8657—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shen et al. | Medium-Entropy perovskites Sr (FeαTiβCoγMnζ) O3-δ as promising cathodes for intermediate temperature solid oxide fuel cell | |
Sun et al. | A-site deficient perovskite: the parent for in situ exsolution of highly active, regenerable nano-particles as SOFC anodes | |
Tang et al. | Understanding of A-site deficiency in layered perovskites: promotion of dual reaction kinetics for water oxidation and oxygen reduction in protonic ceramic electrochemical cells | |
Lu et al. | Mo-doped Pr0. 6Sr0. 4Fe0. 8Ni0. 2O3-δ as potential electrodes for intermediate-temperature symmetrical solid oxide fuel cells | |
Zhang et al. | (La0. 75Sr0. 25) 0.95 (Cr0. 5Mn0. 5) O3-δ-Ce0. 8Gd0. 2O1. 9 scaffolded composite cathode for high temperature CO2 electroreduction in solid oxide electrolysis cell | |
Shen et al. | Tuning layer-structured La 0.6 Sr 1.4 MnO 4+ δ into a promising electrode for intermediate-temperature symmetrical solid oxide fuel cells through surface modification | |
Wang et al. | Highly promoted performance of triple-conducting cathode for YSZ-based SOFC via fluorine anion doping | |
Xu et al. | Electrochemical performance of highly active ceramic symmetrical electrode La0. 3Sr0. 7Ti0. 3Fe0. 7O3-δ-CeO2 for reversible solid oxide cells | |
Huang et al. | Electrochemical evaluation of double perovskite PrBaCo2-xMnxO5+ δ (x= 0, 0.5, 1) as promising cathodes for IT-SOFCs | |
Wang et al. | Mo-doped La0· 6Sr0· 4FeO3-δ as an efficient fuel electrode for direct electrolysis of CO2 in solid oxide electrolysis cells | |
Yang et al. | Exploiting rare-earth-abundant layered perovskite cathodes of LnBa0. 5Sr0. 5Co1. 5Fe0. 5O5+ δ (Ln= La and Nd) for SOFCs | |
Yoo et al. | Stability and performance of SOFC with SrTiO3-based anode in CH4 fuel | |
Yu et al. | BaZr0. 1Co0. 4Fe0. 4Y0. 1O3-SDC composite as quasi-symmetrical electrode for proton conducting solid oxide fuel cells | |
Xu et al. | Oxide composite of La0. 3Sr0. 7Ti0. 3Fe0. 7O3-δ and CeO2 as an active fuel electrode for reversible solid oxide cells | |
Shah et al. | Interface engineering of bi-layer semiconductor SrCoSnO3-δ-CeO2-δ heterojunction electrolyte for boosting the electrochemical performance of low-temperature ceramic fuel cell | |
Miao et al. | Sr2Fe1+ xMo1− xO6− δ as anode material of cathode–supported solid oxide fuel cells | |
Hou et al. | High-performance La0· 3Sr0· 7Fe0· 9Ti0· 1O3-δ as fuel electrode for directly electrolyzing CO2 in solid oxide electrolysis cells | |
Liu et al. | Composite ceramic cathode La0. 9Ca0. 1Fe0. 9Nb0. 1O3-δ/Sc0. 2Zr0. 8O2− δ towards efficient carbon dioxide electrolysis in zirconia-based high temperature electrolyser | |
Du et al. | Electrical conductivity and cell performance of La0. 3Sr0. 7Ti1− xCrxO3− δ perovskite oxides used as anode and interconnect material for SOFCs | |
Ding et al. | High-performing and stable electricity generation by ceramic fuel cells operating in dry methane over 1000 hours | |
Wu et al. | Electrochemical performance of La0. 3Sr0. 7Ti0. 3Fe0. 7O3-δ/CeO2 composite cathode for CO2 reduction in solid oxide electrolysis cells | |
Park et al. | Effect of anode firing on the performance of lanthanum and nickel co-doped SrTiO3 (La0. 2Sr0. 8Ti0. 9Ni0. 1O3− δ) anode of solid oxide fuel cell | |
Nie et al. | Processing SCNT (SrCo0. 8Nb0. 1Ta0. 1O3-δ)-SCDC (Ce0. 8Sm0. 05Ca0. 15O2-δ) composite into semiconductor-ionic membrane fuel cell (SIMFC) to operate below 500° C | |
Men et al. | Improved performance of a lanthanum strontium manganite–based oxygen electrode for an intermediate-temperature solid oxide electrolysis cell realized via ionic conduction enhancement | |
Li et al. | Investigation of Nd2Ni0. 9M0. 1O4+ δ (M= Ni, Co, Cu, Fe, and Mn) cathodes for intermediate-temperature solid oxide fuel cell |