Lehmann et al., 2011 - Google Patents
Power saving design techniques for implantable neuro-stimulatorsLehmann et al., 2011
- Document ID
- 11412551260283886820
- Author
- Lehmann T
- Chun H
- Yang Y
- Publication year
- Publication venue
- 2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS)
External Links
Snippet
Keeping power consumption low in implantable neuro-stimulators such as Cochlear Implants or Vision Prostheses is one of the major design challenges in their circuit design. Usually electrode impedance and stimulation currents required to elicit physiological …
- 238000000034 method 0 title abstract description 8
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation, e.g. heart pace-makers
- A61N1/372—Arrangements in connection with the implantation of stimulators
- A61N1/378—Electrical supply
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation, e.g. heart pace-makers
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/36128—Control systems
- A61N1/36146—Control systems specified by the stimulation parameters
- A61N1/3615—Intensity
- A61N1/36153—Voltage
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation, e.g. heart pace-makers
- A61N1/372—Arrangements in connection with the implantation of stimulators
- A61N1/37211—Means for communicating with stimulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation, e.g. heart pace-makers
- A61N1/36014—External stimulators, e.g. with patch electrodes
- A61N1/36021—External stimulators, e.g. with patch electrodes for treatment of pain
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation, e.g. heart pace-makers
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/36128—Control systems
- A61N1/36146—Control systems specified by the stimulation parameters
- A61N1/36167—Timing, e.g. stimulation onset
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation, e.g. heart pace-makers
- A61N1/36032—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation, e.g. heart pace-makers of the outer, middle or inner ear, e.g. cochlear implants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation, e.g. heart pace-makers
- A61N1/36046—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation, e.g. heart pace-makers of the eye
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/05—Electrodes for implantation or insertion into the body, e.g. heart electrode
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/325—Applying electric currents by contact electrodes alternating or intermittent currents for iontophoresis, i.e. transfer of media in ionic state by an electromotoric force into the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/08—Arrangements or circuits for monitoring, protecting, controlling or indicating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/025—Digital circuitry features of electrotherapy devices, e.g. memory, clocks, processors
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chun et al. | Safety ensuring retinal prosthesis with precise charge balance and low power consumption | |
Lee et al. | A power-efficient wireless system with adaptive supply control for deep brain stimulation | |
AU2017324430B2 (en) | Current generation architecture for an implantable medical device | |
JP5776165B2 (en) | Biological tissue stimulation circuit | |
Luo et al. | A high-voltage-tolerant and precise charge-balanced neuro-stimulator in low voltage CMOS process | |
US20130018441A1 (en) | Electronic stimulator device pulse generator circuit | |
van Dongen et al. | A power-efficient multichannel neural stimulator using high-frequency pulsed excitation from an unfiltered dynamic supply | |
Hsieh et al. | Monopolar biphasic stimulator with discharge function and negative level shifter for neuromodulation SoC integration in low-voltage CMOS process | |
Monge et al. | A fully intraocular 0.0169 mm 2/pixel 512-channel self-calibrating epiretinal prosthesis in 65nm CMOS | |
Bisoni et al. | An HV-CMOS integrated circuit for neural stimulation in prosthetic applications | |
Urso et al. | An Ultra High-Frequency 8-Channel Neurostimulator Circuit With $\text {68}\% $ Peak Power Efficiency | |
Yen et al. | Design of dual-mode stimulus chip with built-in high voltage generator for biomedical applications | |
US20050245994A1 (en) | Active discharge systems and methods | |
Jung et al. | Design of safe two-wire interface-driven chip-scale neurostimulator for visual prosthesis | |
EP3481491A1 (en) | Biasing of a current generation architecture for an implantable medical device | |
Lin et al. | Design of multiple-charge-pump system for implantable biomedical applications | |
Lehmann et al. | Power saving design techniques for implantable neuro-stimulators | |
Liu et al. | A power‐efficient current‐mode neural/muscular stimulator design for peripheral nerve prosthesis | |
Chun et al. | Implantable stimulator for bipolar stimulation without charge balancing circuits | |
You et al. | A 15.7-V-Compliant 86% Peak Efficiency Current-Mode Stimulator With Dynamic Voltage Supply for Implantable Medical Devices | |
Lehmann et al. | Power saving circuit design techniques for implantable neuro-stimulators | |
US20230046820A1 (en) | Apparatuses and methods for wirelessly powered charge-balanced electrical stimulation | |
Sooksood et al. | Recent advances in power efficient output stage for high density implantable stimulators | |
Huang et al. | A 4-channel NMES IC for wearable applications | |
Shulyzki et al. | CMOS current-copying neural stimulator with OTA-sharing |