Peters, 2010 - Google Patents
Polymer optical fiber sensors—a reviewPeters, 2010
View PDF- Document ID
- 11404055625546725234
- Author
- Peters K
- Publication year
- Publication venue
- Smart materials and structures
External Links
Snippet
Polymer optical fibers (POFs) have significant advantages for many sensing applications, including high elastic strain limits, high fracture toughness, high flexibility in bending, high sensitivity to strain and potential negative thermo-optic coefficients. The recent emergence of …
- 239000003365 glass fiber 0 title abstract description 137
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/02—Optical fibre with cladding with or without a coating
- G02B6/02057—Optical fibre with cladding with or without a coating comprising gratings
- G02B6/02076—Refractive index modulation gratings, e.g. Bragg gratings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/02—Optical fibre with cladding with or without a coating
- G02B6/02295—Microstructured optical fibre
- G02B6/02314—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/02—Optical fibre with cladding with or without a coating
- G02B6/02057—Optical fibre with cladding with or without a coating comprising gratings
- G02B6/02066—Gratings having a surface relief structure, e.g. repetitive variation in diameter of core or cladding
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress in general
- G01L1/24—Measuring force or stress in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infra-red, visible light, ultra-violet
- G01L1/242—Measuring force or stress in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infra-red, visible light, ultra-violet the material being an optical fibre
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K11/00—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
- G01K11/32—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmission, scattering or fluorescence in optical fibres
- G01K11/3206—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmission, scattering or fluorescence in optical fibres at discrete locations in the fibre, e.g. by means of Bragg gratings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress in general
- G01L1/24—Measuring force or stress in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infra-red, visible light, ultra-violet
- G01L1/241—Measuring force or stress in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infra-red, visible light, ultra-violet by photoelastic stress analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/08—Testing of mechanical properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Peters | Polymer optical fiber sensors—a review | |
Mizuno et al. | Distributed polymer optical fiber sensors: A review and outlook | |
Kuang et al. | Plastic optical fibre sensors for structural health monitoring: A review of recent progress | |
Leal-Junior et al. | Compensation method for temperature cross-sensitivity in transverse force applications with FBG sensors in POFs | |
Bhowmik et al. | Experimental study and analysis of hydrostatic pressure sensitivity of polymer fibre Bragg gratings | |
Shi et al. | Environmentally stable Fabry–Pérot-type strain sensor based on hollow-core photonic bandgap fiber | |
Bhowmik et al. | High intrinsic sensitivity etched polymer fiber Bragg grating pair for simultaneous strain and temperature measurements | |
Ling et al. | Embedded fibre Bragg grating sensors for non-uniform strain sensing in composite structures | |
Soge et al. | Recent developments in polymer optical fiber strain sensors: A short review | |
Xue et al. | Refractive index sensing based on a long period grating imprinted on a multimode plastic optical fiber | |
Luo et al. | Optimization of the Geometries of Biconical Tapered Fiber Sensors for Monitoring the Early‐Age Curing Temperatures of Concrete Specimens | |
Koerdt et al. | Fabrication and characterization of Bragg gratings in perfluorinated polymer optical fibers and their embedding in composites | |
Savastru et al. | Study of thermo-mechanical characteristics of polymer composite materials with embedded optical fibre | |
Zhou et al. | Fiber-reinforced polymer-packaged optical fiber sensors based on Brillouin optical time-domain analysis | |
Miclos et al. | Transverse mechanical stress and optical birefringence induced into single-mode optical fibre embedded in a smart polymer composite material | |
Li et al. | Temperature-and strain-insensitive torsion sensor based on phase-shifted ultra-long-period grating | |
Large et al. | Microstructured polymer optical fibers compared to conventional POF: Novel properties and applications | |
Webb | 10 Polymer Fiber Bragg Grating Sensors and Their Applications | |
Meng et al. | Development of large-strain macrobend optical-fiber sensor with helical-bending structure for pavement monitoring application | |
Leal-Junior et al. | Temperature-insensitive curvature sensor with plane-by-plane inscription of off-center tilted bragg gratings in CYTOP fibers | |
Liao et al. | A sensitivity-enhanced micro-cavity extrinsic Fabry-Perot interferometric fiber-optic curvature sensor | |
Tahir et al. | Strain measurements using fibre Bragg grating sensor | |
Zheng et al. | Angle sensor for humidity-insensitive angle measurement based on multimode interference | |
Savastru et al. | Analysis of mechanical vibrations applied on a LPGFS smart composite polymer material | |
Peters | 4 Polymer Optical Fiber Sensors |