Husain et al., 2016 - Google Patents
Receiver-based data forwarding in vehicular ad hoc networksHusain et al., 2016
- Document ID
- 11204591847797591677
- Author
- Husain K
- Awang A
- Kamel N
- Publication year
- Publication venue
- 2016 6th International Conference on Intelligent and Advanced Systems (ICIAS)
External Links
Snippet
Efficient Routing in Vehicular Ad Hoc Networks (VANETs) is one of the main challenges faced while providing reliable communication in the vehicular environment. Routing approaches that make routing decisions on the fly during data transmissions are much more …
- 230000015572 biosynthetic process 0 abstract description 14
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
- H04L12/16—Arrangements for providing special services to substations contains provisionally no documents
- H04L12/18—Arrangements for providing special services to substations contains provisionally no documents for broadcast or conference, e.g. multicast
- H04L12/1886—Arrangements for providing special services to substations contains provisionally no documents for broadcast or conference, e.g. multicast with traffic restrictions for efficiency improvement, e.g. involving subnets or subdomains
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/02—Communication route or path selection, e.g. power-based or shortest path routing
- H04W40/04—Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/12—Shortest path evaluation
- H04L45/121—Minimizing delay
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/02—Communication route or path selection, e.g. power-based or shortest path routing
- H04W40/20—Communication route or path selection, e.g. power-based or shortest path routing based on geographic position or location
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/24—Connectivity information management, e.g. connectivity discovery or connectivity update
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/02—Topology update or discovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/16—Multipoint routing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/12—Shortest path evaluation
- H04L45/123—Evaluation of link metrics
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/02—Communication route or path selection, e.g. power-based or shortest path routing
- H04W40/12—Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/02—Communication route or path selection, e.g. power-based or shortest path routing
- H04W40/22—Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W84/00—Network topologies
- H04W84/18—Self-organizing networks, e.g. ad-hoc networks or sensor networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/04—Interdomain routing, e.g. hierarchical routing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/30—Special provisions for routing multiclass traffic
- H04L45/302—Route determination based on requested QoS
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/34—Modification of an existing route
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/54—Store-and-forward switching systems
- H04L12/56—Packet switching systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W4/00—Mobile application services or facilities specially adapted for wireless communication networks
- H04W4/06—Selective distribution or broadcast application services; Mobile application services to user groups; One-way selective calling services
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
- H04W88/04—Terminal devices adapted for relaying to or from another terminal or user
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L2001/0092—Error control systems characterised by the topology of the transmission link
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W72/00—Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W28/00—Network traffic or resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Santos et al. | Performance evaluation of routing protocols in vehicular ad-hoc networks | |
Saleet et al. | Intersection-based geographical routing protocol for VANETs: A proposal and analysis | |
Fekair et al. | CBQoS-Vanet: Cluster-based artificial bee colony algorithm for QoS routing protocol in VANET | |
Cai et al. | LSGO: link state aware geographic opportunistic routing protocol for VANETs | |
Chou et al. | Intersection-based routing protocol for VANETs | |
Qureshi et al. | Road aware geographical routing protocol coupled with distance, direction and traffic density metrics for urban vehicular ad hoc networks | |
Qureshi et al. | Weighted link quality and forward progress coupled with modified RTS/CTS for beaconless packet forwarding protocol (B-PFP) in VANETs | |
Chaqfeh et al. | A novel approach for scalable multi-hop data dissemination in vehicular ad hoc networks | |
Jarupan et al. | PROMPT: A cross-layer position-based communication protocol for delay-aware vehicular access networks | |
Wu et al. | How to utilize interflow network coding in VANETs: A backbone-based approach | |
Bengag et al. | Classification and comparison of routing protocols in VANETs | |
Li et al. | Improving routing in networks of UAVs via scoped flooding and mobility prediction | |
Wu et al. | Can we generate efficient routes by using only beacons? Backbone routing in VANETs | |
Khan et al. | VP-CAST: Velocity and position-based broadcast suppression for VANETs | |
Bengag et al. | Routing protocols for VANETs: a taxonomy, evaluation and analysis | |
Oubbati et al. | IRTIV: Intelligent routing protocol using real time traffic information in urban vehicular environment | |
Wang et al. | Delay-aware relay selection with heterogeneous communication range in VANETs | |
Husain et al. | Receiver-based data forwarding in vehicular ad hoc networks | |
Arzil et al. | Adaptive routing protocol for VANETs in city environments using real-time traffic information | |
Nakamura et al. | A method for improving data delivery efficiency in delay tolerant vanet with scheduled routes of cars | |
Farooq et al. | Selective flooding techniques for dissemination in VANETs | |
Liu et al. | A connectivity aware transmission quality guaranteed geographic routing in urban Internet of Vehicles | |
Wang et al. | A receiver-based routing algorithm using competing parameter for VANET in urban scenarios | |
Padiya et al. | Cluster-based combined hybrid relay vehicle selection approach for improving performance and reliability in vehicular ad hoc networks | |
Husain et al. | Performance evaluation of a receiver-based routing protocol in vehicular ad-hoc networks |