Ge, 2014 - Google Patents
Active learning strategy for smart soft sensor development under a small number of labeled data samplesGe, 2014
- Document ID
- 11123207021172122251
- Author
- Ge Z
- Publication year
- Publication venue
- Journal of Process Control
External Links
Snippet
This contribution proposes a new active learning strategy for smart soft sensor development. The main objective of the smart soft sensor is to opportunely collect labeled data samples in such a way as to minimize the error of the regression process while minimizing the number …
- 230000018109 developmental process 0 title abstract description 12
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management, e.g. organising, planning, scheduling or allocating time, human or machine resources; Enterprise planning; Organisational models
- G06Q10/063—Operations research or analysis
- G06Q10/0639—Performance analysis
- G06Q10/06393—Score-carding, benchmarking or key performance indicator [KPI] analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5009—Computer-aided design using simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce, e.g. shopping or e-commerce
- G06Q30/02—Marketing, e.g. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards; Price estimation or determination
- G06Q30/0202—Market predictions or demand forecasting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/18—Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30861—Retrieval from the Internet, e.g. browsers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/20—Handling natural language data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation, e.g. linear programming, "travelling salesman problem" or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce, e.g. shopping or e-commerce
- G06Q30/01—Customer relationship, e.g. warranty
- G06Q30/018—Business or product certification or verification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2217/00—Indexing scheme relating to computer aided design [CAD]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Systems or methods specially adapted for a specific business sector, e.g. utilities or tourism
- G06Q50/10—Services
- G06Q50/20—Education
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ge | Active learning strategy for smart soft sensor development under a small number of labeled data samples | |
Chong et al. | Calibrating building energy simulation models: A review of the basics to guide future work | |
Ge | Active probabilistic sample selection for intelligent soft sensing of industrial processes | |
Bao et al. | Co-training partial least squares model for semi-supervised soft sensor development | |
Hazama et al. | Covariance-based locally weighted partial least squares for high-performance adaptive modeling | |
Storlie et al. | Calibration of computational models with categorical parameters and correlated outputs via Bayesian smoothing spline ANOVA | |
Bader et al. | Sample size requirements for bifactor models | |
Ge et al. | Nonlinear semisupervised principal component regression for soft sensor modeling and its mixture form | |
Hu et al. | An adaptive sampling method for variable-fidelity surrogate models using improved hierarchical kriging | |
Yuan et al. | Probabilistic density-based regression model for soft sensing of nonlinear industrial processes | |
Polyzou et al. | Grade prediction with course and student specific models | |
Li et al. | A new approach to assess product lifetime performance for small data sets | |
Yeo et al. | Development of adaptive soft sensor using locally weighted kernel partial least square model | |
Sadeghian et al. | Robust probabilistic principal component analysis for process modeling subject to scaled mixture Gaussian noise | |
Kenett et al. | Self‐supervised cross validation using data generation structure | |
Wei et al. | Spatial construction for modeling of unknown distributed parameter systems | |
Zheng et al. | Linear subspace principal component regression model for quality estimation of nonlinear and multimode industrial processes | |
Kaneko | Beware of r2 even for test datasets: Using the latest measured y‐values (r2LM) in time series data analysis | |
Mussgnug | The predictive reframing of machine learning applications: good predictions and bad measurements | |
Zhu et al. | Domain Compensation-Assisted Quality Inference Enhancement of Chemical Processes with Distributed Outputs | |
Wang et al. | A new nonlinear process monitoring method based on linear and nonlinear partition | |
Zheng et al. | Semi-supervised process data regression and application based on latent factor analysis model | |
Cang et al. | Adaptive soft sensor method based on online selective ensemble of partial least squares for quality prediction of chemical process | |
Llanos et al. | Robust estimation of nonredundant measurements and equivalent sets of observations | |
Zhang | Application of TS fuzzy neural network based on declination compensation in soft sensing |