Lazarus et al., 2020 - Google Patents
3D variable‐density SPARKLING trajectories for high‐resolution T2*‐weighted magnetic resonance imagingLazarus et al., 2020
View PDF- Document ID
- 11123108937377382061
- Author
- Lazarus C
- Weiss P
- El Gueddari L
- Mauconduit F
- Massire A
- Ripart M
- Vignaud A
- Ciuciu P
- Publication year
- Publication venue
- NMR in Biomedicine
External Links
Snippet
We have recently proposed a new optimization algorithm called SPARKLING (Spreading Projection Algorithm for Rapid K‐space sampLING) to design efficient compressive sampling patterns for magnetic resonance imaging (MRI). This method has a few …
- 238000002595 magnetic resonance imaging 0 title abstract description 7
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences, Generation or control of pulse sequences ; Operator Console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/561—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
- G01R33/5611—Parallel magnetic resonance imaging, e.g. sensitivity encoding [SENSE], simultaneous acquisition of spatial harmonics [SMASH], unaliasing by Fourier encoding of the overlaps using the temporal dimension [UNFOLD], k-t-broad-use linear acquisition speed-up technique [k-t-BLAST], k-t-SENSE
- G01R33/5612—Parallel RF transmission, i.e. RF pulse transmission using a plurality of independent transmission channels
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences, Generation or control of pulse sequences ; Operator Console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/561—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
- G01R33/5615—Echo train techniques involving acquiring plural, differently encoded, echo signals after one RF excitation, e.g. using gradient refocusing in echo planar imaging [EPI], RF refocusing in rapid acquisition with relaxation enhancement [RARE] or using both RF and gradient refocusing in gradient and spin echo imaging [GRASE]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences, Generation or control of pulse sequences ; Operator Console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/563—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
- G01R33/56341—Diffusion imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences, Generation or control of pulse sequences ; Operator Console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/565—Correction of image distortions, e.g. due to magnetic field inhomogeneities
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/4818—MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/483—NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/46—NMR spectroscopy
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/003—Reconstruction from projections, e.g. tomography
- G06T11/006—Inverse problem, transformation from projection-space into object-space, e.g. transform methods, back-projection, algebraic methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2211/00—Image generation
- G06T2211/40—Computed tomography
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lazarus et al. | SPARKLING: variable‐density k‐space filling curves for accelerated T2*‐weighted MRI | |
Lazarus et al. | 3D variable‐density SPARKLING trajectories for high‐resolution T2*‐weighted magnetic resonance imaging | |
US10670678B2 (en) | MR imaging using stack-of stars acquisition | |
Assländer et al. | Low rank alternating direction method of multipliers reconstruction for MR fingerprinting | |
Polak et al. | Highly‐accelerated volumetric brain examination using optimized wave‐CAIPI encoding | |
JP6513398B2 (en) | MR image reconstruction using prior information constrained regularization | |
CN101232845B (en) | Magnetic resonance imaging device | |
Polak et al. | Joint multi‐contrast variational network reconstruction (jVN) with application to rapid 2D and 3D imaging | |
Liu et al. | Compressed sensing MRI combined with SENSE in partial k-space | |
Koay et al. | Sparse and optimal acquisition design for diffusion MRI and beyond | |
CN104765011A (en) | Magnetic resonance apparatus for reconstructing magnetic resonance raw data | |
Snyder et al. | MRI by steering resonance through space | |
Schaetz et al. | Accelerated computing in magnetic resonance imaging: real‐time imaging using nonlinear inverse reconstruction | |
Li et al. | Analysis of generalized rosette trajectory for compressed sensing MRI | |
CN115639510A (en) | Magnetic resonance imaging method, spectroscopic imaging method, apparatus, device, and storage medium | |
Shi et al. | Accelerated susceptibility-based positive contrast imaging of MR compatible metallic devices based on modified fast spin echo sequences | |
Chen et al. | 3D‐EPI blip‐up/down acquisition (BUDA) with CAIPI and joint H ankel structured low‐rank reconstruction for rapid distortion‐free high‐resolution T 2* mapping | |
Wang et al. | Stochastic optimization of three‐dimensional non‐Cartesian sampling trajectory | |
Sharma et al. | Highly‐accelerated Bloch‐Siegert mapping using joint autocalibrated parallel image reconstruction | |
Chen et al. | Sequential combination of parallel imaging and dynamic artificial sparsity framework for rapid free‐breathing golden‐angle radial dynamic MRI: K‐T ARTS‐GROWL | |
Fyrdahl et al. | Generalization of three-dimensional golden-angle radial acquisition to reduce eddy current artifacts in bSSFP CMR imaging | |
Rioux et al. | 3D single point imaging with compressed sensing provides high temporal resolution R 2* mapping for in vivo preclinical applications | |
Froelich et al. | Fast spin‐echo approach for accelerated B1 gradient–based MRI | |
Boubertakh et al. | Whole‐heart imaging using undersampled radial phase encoding (RPE) and iterative sensitivity encoding (SENSE) reconstruction | |
Tobisch et al. | Comparison of basis functions and q‐space sampling schemes for robust compressed sensing reconstruction accelerating diffusion spectrum imaging |