Saikia et al., 2016 - Google Patents
LC series resonant converter based high power HBLED lamp driver with ZVSSaikia et al., 2016
- Document ID
- 11189887411763362301
- Author
- Saikia M
- Tom B
- Publication year
- Publication venue
- 2016 IEEE Annual India Conference (INDICON)
External Links
Snippet
In this paper, an efficient light emitting-diode (LED) lamp driver circuit for high power applications with a dimming feature is proposed. It consists of an LC series resonant converter in series with a DC bus. The idea is to supply the threshold voltage from a constant …
- 239000003990 capacitor 0 abstract description 16
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHTING NOT OTHERWISE PROVIDED FOR
- H05B33/00—Electroluminescent light sources
- H05B33/02—Details
- H05B33/08—Circuit arrangements not adapted to a particular application
- H05B33/0803—Circuit arrangements not adapted to a particular application for light emitting diodes (LEDs) comprising only inorganic semi-conductor materials
- H05B33/0806—Structural details of the circuit
- H05B33/0809—Structural details of the circuit in the conversion stage
- H05B33/0815—Structural details of the circuit in the conversion stage with a controlled switching regulator
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion
- Y02B70/12—Power factor correction technologies for power supplies
- Y02B70/126—Active technologies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion
- Y02B70/14—Reduction of losses in power supplies
- Y02B70/1416—Converters benefiting from a resonance, e.g. resonant or quasi-resonant converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies
- Y02B20/16—Gas discharge lamps, e.g. fluorescent lamps, high intensity discharge lamps [HID] or molecular radiators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHTING NOT OTHERWISE PROVIDED FOR
- H05B41/00—Circuit arrangements or apparatus for igniting or operating discharge lamps
- H05B41/14—Circuit arrangements
- H05B41/26—Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN202652596U (en) | Circuit for controlling dimming level of one or more light emitting diodes | |
JP6775745B1 (en) | AC-DC converter | |
Liu et al. | Buck–boost–buck-type single-switch multistring resonant LED driver with high power factor and passive current balancing | |
US9338843B2 (en) | High power factor, electrolytic capacitor-less driver circuit for light-emitting diode lamps | |
Fang et al. | Zero ripple single stage AC-DC LED driver with unity power factor | |
CN102348319A (en) | Light-emitting diode lamp drive power supply | |
JP5414950B2 (en) | High efficiency LED power supply | |
Molavi et al. | A nonisolated wide-range resonant converter for LED driver applications | |
JP7137260B1 (en) | AC-DC power supply | |
Lin et al. | A high efficiency integrated step-down Cuk and flyback converter for LED power driver | |
Saikia et al. | LC series resonant converter based high power HBLED lamp driver with ZVS | |
Corrêa et al. | Non‐isolated high step‐up/step‐down quadratic converter for light‐emitting diode driving | |
Qu et al. | Isolated PFC pre-regulator for LED lamps | |
Shrivastava et al. | Improved power quality based high brightness LED lamp driver | |
Wang et al. | A single-stage single-switch LED driver based on integrated buck-boost circuit and Class E converter | |
Reddy et al. | Input controlled series-resonant converter for LED lighting application | |
JP2024130821A (en) | Resonant AC-DC power supply | |
Mounika et al. | ADC controlled half-bridge LC series resonant converter for LED lighting | |
RU176540U1 (en) | LED LIGHT SUPPLY POWER SUPPLY | |
Udumula et al. | Voltage mode control dcm hsd-cib pfc converter for hb-led lighting applications | |
Jagadeesh et al. | An efficient parallel resonant converter for LED lighting | |
Udumula | Single input LC series resonant converter based high brightness light emitting diode driver with ZVS | |
Veeramallu et al. | Reduced ripple current three phase parallel loaded resonant converter for LED lighting | |
Shen et al. | Dual-output single-stage bridgeless SEPIC with power factor correction | |
Qu et al. | Current‐fed isolated PFC pre‐regulator for multiple LED lamps with extended lifetime |