[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Zeng et al., 2016 - Google Patents

Antimony selenide thin-film solar cells

Zeng et al., 2016

Document ID
11169525143103193673
Author
Zeng K
Xue D
Tang J
Publication year
Publication venue
Semiconductor science and technology

External Links

Snippet

Due to their promising applications in low-cost, flexible and high-efficiency photovoltaics, there has been a booming exploration of thin-film solar cells using new absorber materials such as Sb 2 Se 3, SnS, FeS 2, CuSbS 2 and CuSbSe 2. Among them, Sb 2 Se 3-based …
Continue reading at iopscience.iop.org (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L31/00Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0326Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising AIBIICIVDVI kesterite compounds, e.g. Cu2ZnSnSe4, Cu2ZnSnS4
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L31/00Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/54Material technologies
    • Y02E10/549Material technologies organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/54Material technologies
    • Y02E10/543Solar cells from Group II-VI materials
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L31/00Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L31/00Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L31/00Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus peculiar to the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/42Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for sensing infra-red radiation, light, electro-magnetic radiation of shorter wavelength or corpuscular radiation and adapted for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation using organic materials as the active part, or using a combination of organic materials with other material as the active part; Multistep processes for their manufacture
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials

Similar Documents

Publication Publication Date Title
Zeng et al. Antimony selenide thin-film solar cells
Hadar et al. Nonlinear band gap tunability in selenium–tellurium alloys and its utilization in solar cells
Yuan et al. Efficient planar antimony sulfide thin film photovoltaics with large grain and preferential growth
Haider et al. A comprehensive device modelling of perovskite solar cell with inorganic copper iodide as hole transport material
Zhang et al. Selenium‐graded Sb2 (S1− xSex) 3 for planar heterojunction solar cell delivering a certified power conversion efficiency of 5.71%
Chen et al. Recent progress and challenges of bismuth‐based halide perovskites for emerging optoelectronic applications
Bourdais et al. Is the Cu/Zn disorder the main culprit for the voltage deficit in kesterite solar cells?
Tiwari et al. Photovoltaic performance of phase-pure orthorhombic BiSI thin-films
CN108369991B (en) Mixed cation perovskites
Sun et al. Self-assembled nanometer-scale ZnS structure at the CZTS/ZnCdS heterointerface for high-efficiency wide band gap Cu2ZnSnS4 solar cells
Barthwal et al. Present status and future perspective of antimony chalcogenide (Sb2X3) photovoltaics
Kaur et al. Nanoscale charge transport and local surface potential distribution to probe defect passivation in Ag doped Cu2ZnSnS4 absorbing layer
Lee et al. Solution-processed Cu2ZnSnS4 superstrate solar cell using vertically aligned ZnO nanorods
Sulaman et al. Enhanced performance of solution-processed broadband photodiodes by epitaxially blending MAPbBr3 quantum dots and ternary PbSxSe1− x quantum dots as the active layer
Shargaieva et al. Influence of the grain size on the properties of CH3NH3PbI3 thin films
Fu et al. Tuning the Se content in Cu2ZnSn (S, Se) 4 absorber to achieve 9.7% solar cell efficiency from a thiol/amine-based solution process
Wang et al. Interface engineering of antimony selenide solar cells: A review on the optimization of energy band alignments
Peksu et al. A third generation solar cell based on wet-chemically etched Si nanowires and sol-gel derived Cu2ZnSnS4 thin films
Hou et al. Low-temperature solution-processed kesterite solar cell based on in situ deposition of ultrathin absorber layer
Ma et al. Air-stable layered bismuth-based perovskite-like materials: Structures and semiconductor properties
Singh et al. Superior heterojunction properties of solution processed copper-zinc-tin-sulphide quantum dots on Si
Valipour et al. Improvement of the stability of perovskite solar cells in terms of humidity/heat via compositional engineering
Chukwuemeka et al. Performance and Stability evaluation of low-cost inorganic methyl ammonium lead iodide (CH3NH3PbI3) Perovskite Solar cells enhanced with natural dyes from Cashew and Mango leaves
Gunavathy et al. Investigations on copper zinc tin sulfide thin films grown through nebulizer assisted spray pyrolysis technique
Choi et al. Heavy pnictogen chalcohalides for efficient, stable, and environmentally friendly solar cell applications