Cheng et al., 2021 - Google Patents
Design of miniaturized microstrip antenna for smart home wireless sensorCheng et al., 2021
- Document ID
- 11150451892933826986
- Author
- Cheng K
- Liang Z
- Hu B
- Publication year
- Publication venue
- 2021 IEEE 4th International Conference on Electronic Information and Communication Technology (ICEICT)
External Links
Snippet
Three Miniaturized Microstrip antennas are proposed in this paper. In the first miniaturized antenna, the CSRR (Complementary Split Ring Resonator) is etched on the metal ground plate as the DGS (Defected Ground Structure), which reduces the area by 30.78% compared …
- 238000005516 engineering process 0 abstract description 17
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q1/00—Details of, or arrangements associated with, aerials
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
- H01Q1/242—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
- H01Q1/243—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q9/00—Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant aerials
- H01Q9/16—Resonant aerials with feed intermediate between the extremities of the aerial, e.g. centre-fed dipole
- H01Q9/26—Resonant aerials with feed intermediate between the extremities of the aerial, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q9/00—Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant aerials
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/0442—Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q9/00—Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant aerials
- H01Q9/16—Resonant aerials with feed intermediate between the extremities of the aerial, e.g. centre-fed dipole
- H01Q9/28—Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q21/00—Aerial arrays or systems
- H01Q21/06—Arrays of individually energised active aerial units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
- H01Q21/065—Patch antenna array
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q9/00—Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant aerials
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/0414—Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q9/00—Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant aerials
- H01Q9/30—Resonant aerials with feed to end of elongated active element, e.g. unipole
- H01Q9/40—Element having extended radiating surface
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q9/00—Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant aerials
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/0421—Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q9/00—Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant aerials
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/0428—Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q1/00—Details of, or arrangements associated with, aerials
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/38—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q1/00—Details of, or arrangements associated with, aerials
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/364—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith using a particular conducting material, e.g. supraconductor
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot aerials; Leaky-waveguide aerials; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/10—Resonant slot aerials
- H01Q13/18—Resonant slot aerials the slot being backed by, or formed in boundary wall of, a resonant cavity ; Open cavity antennas
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction, or polarisation of waves radiated from an aerial, e.g. quasi-optical devices
- H01Q15/0006—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q21/00—Aerial arrays or systems
- H01Q21/24—Combinations of aerial elements or aerial units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q21/00—Aerial arrays or systems
- H01Q21/28—Combinations of substantially independent non-interacting aerial units or systems
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mao et al. | Compact dual‐band monopole antenna with defected ground plane for Internet of things | |
Zhang et al. | Compact and high-gain UHF/UWB RFID reader antenna | |
Gao et al. | FDTD analysis of a dual-frequency microstrip patch antenna | |
Thenmozhi et al. | A novel compact square patch antenna for wireless LAN applications | |
Cheng et al. | Design of miniaturized microstrip antenna for smart home wireless sensor | |
Raghavendra et al. | Design of modified sierpinski carpet fractal patch antenna for multiband applications | |
Saharsh et al. | Design and Analysis of Koch Snowflake Fractal Antenna Array | |
Li et al. | Broadband and high-gain millimeter-wave and terahertz antenna arrays | |
Tiwari et al. | Compact MIMO Antenna with Improved Isolation for 5G/Ultra-Wideband Communications | |
Yang et al. | Design and analysis of a novel miniaturized dual-band omnidirectional antenna for WiFi applications | |
Li et al. | A wideband directional mm-wave antenna for micro-deformation monitoring radar applications | |
Ibrahim et al. | Compact Ultrawideband Antenna Backed by an Artificial Magnetic Conductor | |
Lin et al. | A miniature tri-band folded shorted-patch antenna for 5G communication | |
Gadhafi et al. | A tuning fork shaped differential dipole antenna with floating reflectors | |
Kumar et al. | Realization of band-notch UWB monopole antenna using AMC structure | |
Wu et al. | Dual frequency MIMO antenna with neutralization line | |
You et al. | Design of Slot-Coupled Broadband 5G mmWave Base Station Antenna Based on Double-Layer Patch | |
Firdaus et al. | Design of a compact antenna with stub using stepped impedance resonator | |
Liu et al. | An air‐substrate narrow‐patch microstrip antenna with high radiation performance for 2.4 GHz WLAN access point | |
Naik et al. | A Fractal UWB Antenna with WLAN Notch Characteristics | |
Bhattacharya | Microstrip Antennas: Theory, Principles and Review of Literature | |
Ghosh et al. | Cross-polarization reduction of E-shaped microstrip array using spiral-ring resonator | |
Munir | Numerical characterization of metamaterials-based patch antenna array | |
Misran et al. | Ultra-wideband antenna with Y-shape defected ground structure | |
Banuprakash et al. | A microstrip antenna for bluetooth, WLAN and X band communication applications using defective ground structure |