Chen et al., 2010 - Google Patents
Nanosecond time-resolved polarization spectroscopies: tools for probing protein reaction mechanismsChen et al., 2010
View HTML- Document ID
- 11039860332180890553
- Author
- Chen E
- Goldbeck R
- Kliger D
- Publication year
- Publication venue
- Methods
External Links
Snippet
Polarization methods, introduced in the 1800s, offered one of the earliest ways to examine protein structure. Since then, many other structure-sensitive probes have been developed, but circular dichroism (CD) remains a powerful technique because of its versatility and the …
- 102000004169 proteins and genes 0 title abstract description 43
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
- G01N2021/653—Coherent methods [CARS]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/636—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited using an arrangement of pump beam and probe beam; using the measurement of optical non-linear properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infra-red light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/21—Polarisation-affecting properties
- G01N21/23—Bi-refringence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colour
- G01J3/28—Investigating the spectrum
- G01J3/44—Raman spectrometry; Scattering spectrometry; Fluorescence spectrometry
- G01J3/4406—Fluorescence spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colour
- G01J3/02—Details
- G01J3/0205—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
- G01J3/0224—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using polarising or depolarising elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/48—Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colour
- G01J3/28—Investigating the spectrum
- G01J3/42—Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colour
- G01J3/12—Generating the spectrum; Monochromators
- G01J3/1256—Generating the spectrum; Monochromators using acousto-optic tunable filter
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colour
- G01J3/12—Generating the spectrum; Monochromators
- G01J3/18—Generating the spectrum; Monochromators using diffraction elements, e.g. grating
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/62—Detectors specially adapted therefor
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wen | Raman spectroscopy of protein pharmaceuticals | |
US9476768B2 (en) | Two-dimensional fourier transform spectrometer | |
Franko et al. | Analytical thermal lens instrumentation | |
Takeuchi | Raman structural markers of tryptophan and histidine side chains in proteins | |
Segel et al. | Characterization of transient intermediates in lysozyme folding with time-resolved small-angle X-ray scattering | |
Mocz et al. | Fluorescence techniques in analysis of protein–ligand interactions | |
Meyer‐Ilse et al. | Recent advances in ultrafast time‐resolved chirality measurements: perspective and outlook | |
Wang | Ultrafast two-dimensional infrared spectroscopy for molecular structures and dynamics with expanding wavelength range and increasing sensitivities: from experimental and computational perspectives | |
Shapiro et al. | Nanosecond optical rotatory dispersion spectroscopy: application to photolyzed hemoglobin-CO kinetics | |
Keiderling et al. | Mini review: Instrumentation for vibrational circular dichroism spectroscopy, still a role for dispersive instruments | |
Borucki et al. | Kinetics of proton uptake and dye binding by photoactive yellow protein in wild type and in the E46Q and E46A mutants | |
Peng et al. | Dual-comb optical activity spectroscopy for the analysis of vibrational optical activity induced by external magnetic field | |
Sage et al. | Infrared protein crystallography | |
Stadnytskyi et al. | Near shot-noise limited time-resolved circular dichroism pump-probe spectrometer | |
Goldbeck et al. | [7] Nanosecond time-resolved absorption and polarization dichroism spectroscopies | |
Changenet et al. | Recent advances in the development of ultrafast electronic circular dichroism for probing the conformational dynamics of biomolecules in solution | |
Chen et al. | Nanosecond time-resolved polarization spectroscopies: tools for probing protein reaction mechanisms | |
Steiner-Browne et al. | Investigating native state fluorescence emission of Immunoglobulin G using polarized Excitation Emission Matrix (pEEM) spectroscopy and PARAFAC | |
Zhang et al. | Nanosecond circular dichroism spectral measurements: extension to the far-ultraviolet region | |
Chen et al. | Dynamics of the N-terminal α-helix unfolding in the photoreversion reaction of phytochrome A | |
Asher et al. | Ultraviolet resonance Raman and absorption difference spectroscopy of myoglobins: titration behavior of individual tyrosine residues | |
Chen et al. | Nanosecond laser temperature-jump optical rotatory dispersion: Application to early events in protein folding/unfolding | |
Popp et al. | Site‐Specific Dynamics of β‐Sheet Peptides with DPro–Gly Turns Probed by Laser‐Excited Temperature‐Jump Infrared Spectroscopy | |
Kliger et al. | Recent advances in time resolved circular dichroism spectroscopy | |
Heyn et al. | Chromophore reorientation during the photocycle of bacteriorhodopsin: experimental methods and functional significance |