Zhou et al., 2016 - Google Patents
Peak temperature minimization via task allocation and splitting for heterogeneous MPSoC real-time systemsZhou et al., 2016
- Document ID
- 1093505165232242977
- Author
- Zhou J
- Yan J
- Chen J
- Wei T
- Publication year
- Publication venue
- Journal of Signal Processing Systems
External Links
Snippet
With the continued scaling of the CMOS devices, the exponential increase in power density has strikingly elevated the temperature of on-chip systems. Thus, thermal-aware design has become a pressing research issue in computing system, especially for real-time embedded …
- 238000000034 method 0 abstract description 30
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5005—Allocation of resources, e.g. of the central processing unit [CPU] to service a request
- G06F9/5027—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
- G06F9/505—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals considering the load
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5061—Partitioning or combining of resources
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/48—Programme initiating; Programme switching, e.g. by interrupt
- G06F9/4806—Task transfer initiation or dispatching
- G06F9/4843—Task transfer initiation or dispatching by program, e.g. task dispatcher, supervisor, operating system
- G06F9/4881—Scheduling strategies for dispatcher, e.g. round robin, multi-level priority queues
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5083—Techniques for rebalancing the load in a distributed system
- G06F9/5088—Techniques for rebalancing the load in a distributed system involving task migration
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5094—Allocation of resources, e.g. of the central processing unit [CPU] where the allocation takes into account power or heat criteria
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/34—Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation; Recording or statistical evaluation of user activity, e.g. usability assessment
- G06F11/3409—Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation; Recording or statistical evaluation of user activity, e.g. usability assessment for performance assessment
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/34—Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation; Recording or statistical evaluation of user activity, e.g. usability assessment
- G06F11/3466—Performance evaluation by tracing or monitoring
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/34—Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation; Recording or statistical evaluation of user activity, e.g. usability assessment
- G06F11/3442—Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation; Recording or statistical evaluation of user activity, e.g. usability assessment for planning or managing the needed capacity
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F1/00—Details of data-processing equipment not covered by groups G06F3/00 - G06F13/00, e.g. cooling, packaging or power supply specially adapted for computer application
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power Management, i.e. event-based initiation of power-saving mode
- G06F1/3234—Action, measure or step performed to reduce power consumption
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5009—Computer-aided design using simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2217/00—Indexing scheme relating to computer aided design [CAD]
- G06F2217/78—Power analysis and optimization
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2201/00—Indexing scheme relating to error detection, to error correction, and to monitoring
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/16—Combinations of two or more digital computers each having at least an arithmetic unit, a programme unit and a register, e.g. for a simultaneous processing of several programmes
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhou et al. | Peak temperature minimization via task allocation and splitting for heterogeneous MPSoC real-time systems | |
Juarez et al. | Dynamic energy-aware scheduling for parallel task-based application in cloud computing | |
Hanumaiah et al. | Energy-efficient operation of multicore processors by DVFS, task migration, and active cooling | |
Coskun et al. | Static and dynamic temperature-aware scheduling for multiprocessor SoCs | |
Coskun et al. | Temperature-aware MPSoC scheduling for reducing hot spots and gradients | |
Von Laszewski et al. | Power-aware scheduling of virtual machines in dvfs-enabled clusters | |
Li et al. | Thermal-aware task scheduling in 3D chip multiprocessor with real-time constrained workloads | |
Tang et al. | A self-adaptive scheduling algorithm for reduce start time | |
Chantem et al. | Enhancing multicore reliability through wear compensation in online assignment and scheduling | |
Bertran et al. | Systematic energy characterization of CMP/SMT processor systems via automated micro-benchmarks | |
Gerards et al. | On the interplay between global DVFS and scheduling tasks with precedence constraints | |
Gaudette et al. | Improving smartphone user experience by balancing performance and energy with probabilistic QoS guarantee | |
Datta et al. | Cpu scheduling for power/energy management on multicore processors using cache miss and context switch data | |
Abdi et al. | Hystery: a hybrid scheduling and mapping approach to optimize temperature, energy consumption and lifetime reliability of heterogeneous multiprocessor systems | |
Ma et al. | Improving reliability of soft real-time embedded systems on integrated CPU and GPU platforms | |
Pierson et al. | MILP formulations for spatio-temporal thermal-aware scheduling in Cloud and HPC datacenters | |
Higuera-Toledano et al. | Green adaptation of real-time web services for industrial CPS within a cloud environment | |
Rathore et al. | Longevity framework: Leveraging online integrated aging-aware hierarchical mapping and VF-selection for lifetime reliability optimization in manycore processors | |
Nie et al. | Efficient and scalable scheduling for performance heterogeneous multicore systems | |
Paolillo et al. | Quantifying energy consumption for practical fork-join parallelism on an embedded real-time operating system | |
Pahlavan et al. | Power reduction in HPC data centers: a joint server placement and chassis consolidation approach | |
Azhar et al. | Task-RM: a resource manager for energy reduction in task-parallel applications under quality of service constraints | |
Bashir et al. | A scheduling based energy-aware core switching technique to avoid thermal threshold values in multi-core processing systems | |
Kamatar et al. | GreenFaaS: Maximizing energy efficiency of HPC workloads with FaaS | |
Saadatmand et al. | TAMER: an adaptive task allocation method for aging reduction in multi-core embedded real-time systems |