[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Zhou et al., 2016 - Google Patents

Peak temperature minimization via task allocation and splitting for heterogeneous MPSoC real-time systems

Zhou et al., 2016

Document ID
1093505165232242977
Author
Zhou J
Yan J
Chen J
Wei T
Publication year
Publication venue
Journal of Signal Processing Systems

External Links

Snippet

With the continued scaling of the CMOS devices, the exponential increase in power density has strikingly elevated the temperature of on-chip systems. Thus, thermal-aware design has become a pressing research issue in computing system, especially for real-time embedded …
Continue reading at link.springer.com (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request
    • G06F9/5027Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
    • G06F9/505Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals considering the load
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5061Partitioning or combining of resources
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • G06F9/48Programme initiating; Programme switching, e.g. by interrupt
    • G06F9/4806Task transfer initiation or dispatching
    • G06F9/4843Task transfer initiation or dispatching by program, e.g. task dispatcher, supervisor, operating system
    • G06F9/4881Scheduling strategies for dispatcher, e.g. round robin, multi-level priority queues
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5083Techniques for rebalancing the load in a distributed system
    • G06F9/5088Techniques for rebalancing the load in a distributed system involving task migration
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5094Allocation of resources, e.g. of the central processing unit [CPU] where the allocation takes into account power or heat criteria
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/34Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation; Recording or statistical evaluation of user activity, e.g. usability assessment
    • G06F11/3409Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation; Recording or statistical evaluation of user activity, e.g. usability assessment for performance assessment
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/34Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation; Recording or statistical evaluation of user activity, e.g. usability assessment
    • G06F11/3466Performance evaluation by tracing or monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/34Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation; Recording or statistical evaluation of user activity, e.g. usability assessment
    • G06F11/3442Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation; Recording or statistical evaluation of user activity, e.g. usability assessment for planning or managing the needed capacity
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F1/00Details of data-processing equipment not covered by groups G06F3/00 - G06F13/00, e.g. cooling, packaging or power supply specially adapted for computer application
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power Management, i.e. event-based initiation of power-saving mode
    • G06F1/3234Action, measure or step performed to reduce power consumption
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • G06F17/5009Computer-aided design using simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2217/00Indexing scheme relating to computer aided design [CAD]
    • G06F2217/78Power analysis and optimization
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2201/00Indexing scheme relating to error detection, to error correction, and to monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/16Combinations of two or more digital computers each having at least an arithmetic unit, a programme unit and a register, e.g. for a simultaneous processing of several programmes

Similar Documents

Publication Publication Date Title
Zhou et al. Peak temperature minimization via task allocation and splitting for heterogeneous MPSoC real-time systems
Juarez et al. Dynamic energy-aware scheduling for parallel task-based application in cloud computing
Hanumaiah et al. Energy-efficient operation of multicore processors by DVFS, task migration, and active cooling
Coskun et al. Static and dynamic temperature-aware scheduling for multiprocessor SoCs
Coskun et al. Temperature-aware MPSoC scheduling for reducing hot spots and gradients
Von Laszewski et al. Power-aware scheduling of virtual machines in dvfs-enabled clusters
Li et al. Thermal-aware task scheduling in 3D chip multiprocessor with real-time constrained workloads
Tang et al. A self-adaptive scheduling algorithm for reduce start time
Chantem et al. Enhancing multicore reliability through wear compensation in online assignment and scheduling
Bertran et al. Systematic energy characterization of CMP/SMT processor systems via automated micro-benchmarks
Gerards et al. On the interplay between global DVFS and scheduling tasks with precedence constraints
Gaudette et al. Improving smartphone user experience by balancing performance and energy with probabilistic QoS guarantee
Datta et al. Cpu scheduling for power/energy management on multicore processors using cache miss and context switch data
Abdi et al. Hystery: a hybrid scheduling and mapping approach to optimize temperature, energy consumption and lifetime reliability of heterogeneous multiprocessor systems
Ma et al. Improving reliability of soft real-time embedded systems on integrated CPU and GPU platforms
Pierson et al. MILP formulations for spatio-temporal thermal-aware scheduling in Cloud and HPC datacenters
Higuera-Toledano et al. Green adaptation of real-time web services for industrial CPS within a cloud environment
Rathore et al. Longevity framework: Leveraging online integrated aging-aware hierarchical mapping and VF-selection for lifetime reliability optimization in manycore processors
Nie et al. Efficient and scalable scheduling for performance heterogeneous multicore systems
Paolillo et al. Quantifying energy consumption for practical fork-join parallelism on an embedded real-time operating system
Pahlavan et al. Power reduction in HPC data centers: a joint server placement and chassis consolidation approach
Azhar et al. Task-RM: a resource manager for energy reduction in task-parallel applications under quality of service constraints
Bashir et al. A scheduling based energy-aware core switching technique to avoid thermal threshold values in multi-core processing systems
Kamatar et al. GreenFaaS: Maximizing energy efficiency of HPC workloads with FaaS
Saadatmand et al. TAMER: an adaptive task allocation method for aging reduction in multi-core embedded real-time systems