Manaris et al., 2014 - Google Patents
Making music with computers: Creative programming in PythonManaris et al., 2014
- Document ID
- 10965591259663153977
- Author
- Manaris B
- Brown A
- Publication year
External Links
- 238000009826 distribution 0 abstract description 2
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10H—ELECTROPHONIC MUSICAL INSTRUMENTS
- G10H1/00—Details of electrophonic musical instruments
- G10H1/0033—Recording/reproducing or transmission of music for electrophonic musical instruments
- G10H1/0041—Recording/reproducing or transmission of music for electrophonic musical instruments in coded form
- G10H1/0058—Transmission between separate instruments or between individual components of a musical system
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10H—ELECTROPHONIC MUSICAL INSTRUMENTS
- G10H2210/00—Aspects or methods of musical processing having intrinsic musical character, i.e. involving musical theory or musical parameters or relying on musical knowledge, as applied in electrophonic musical tools or instruments
- G10H2210/101—Music Composition or musical creation; Tools or processes therefor
- G10H2210/151—Music Composition or musical creation; Tools or processes therefor using templates, i.e. incomplete musical sections, as a basis for composing
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10H—ELECTROPHONIC MUSICAL INSTRUMENTS
- G10H1/00—Details of electrophonic musical instruments
- G10H1/0008—Associated control or indicating means
- G10H1/0025—Automatic or semi-automatic music composition, e.g. producing random music, applying rules from music theory or modifying a musical piece
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10H—ELECTROPHONIC MUSICAL INSTRUMENTS
- G10H1/00—Details of electrophonic musical instruments
- G10H1/36—Accompaniment arrangements
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10H—ELECTROPHONIC MUSICAL INSTRUMENTS
- G10H2210/00—Aspects or methods of musical processing having intrinsic musical character, i.e. involving musical theory or musical parameters or relying on musical knowledge, as applied in electrophonic musical tools or instruments
- G10H2210/031—Musical analysis, i.e. isolation, extraction or identification of musical elements or musical parameters from a raw acoustic signal or from an encoded audio signal
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10H—ELECTROPHONIC MUSICAL INSTRUMENTS
- G10H7/00—Instruments in which the tones are synthesised from a data store, e.g. computer organs
- G10H7/08—Instruments in which the tones are synthesised from a data store, e.g. computer organs by calculating functions or polynomial approximations to evaluate amplitudes at successive sample points of a tone waveform
- G10H7/10—Instruments in which the tones are synthesised from a data store, e.g. computer organs by calculating functions or polynomial approximations to evaluate amplitudes at successive sample points of a tone waveform using coefficients or parameters stored in a memory, e.g. Fourier coefficients
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10H—ELECTROPHONIC MUSICAL INSTRUMENTS
- G10H2240/00—Data organisation or data communication aspects, specifically adapted for electrophonic musical tools or instruments
- G10H2240/171—Transmission of musical instrument data, control or status information; Transmission, remote access or control of music data for electrophonic musical instruments
- G10H2240/281—Protocol or standard connector for transmission of analog or digital data to or from an electrophonic musical instrument
- G10H2240/295—Packet switched network, e.g. token ring
- G10H2240/305—Internet or TCP/IP protocol use for any electrophonic musical instrument data or musical parameter transmission purposes
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10H—ELECTROPHONIC MUSICAL INSTRUMENTS
- G10H2250/00—Aspects of algorithms or signal processing methods without intrinsic musical character, yet specifically adapted for or used in electrophonic musical processing
- G10H2250/471—General musical sound synthesis principles, i.e. sound category-independent synthesis methods
- G10H2250/511—Physical modelling or real-time simulation of the acoustomechanical behaviour of acoustic musical instruments using, e.g. waveguides or looped delay lines
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B15/00—Teaching music
- G09B15/02—Boards or like means for providing an indication of notes
- G09B15/04—Boards or like means for providing an indication of notes with sound emitters
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10H—ELECTROPHONIC MUSICAL INSTRUMENTS
- G10H2220/00—Input/output interfacing specifically adapted for electrophonic musical tools or instruments
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B15/00—Teaching music
- G09B15/001—Boards or like means for providing an indication of chords
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10H—ELECTROPHONIC MUSICAL INSTRUMENTS
- G10H5/00—Instruments in which the tones are generated by means of electronic generators
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10G—AIDS FOR MUSIC; SUPPORTS FOR MUSICAL INSTRUMENTS; OTHER AUXILIARY DEVICES OR ACCESSORIES FOR MUSIC OR MUSICAL INSTRUMENTS
- G10G1/00—Means for the representation of music
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Manaris et al. | Making music with computers: Creative programming in Python | |
Boulanger | The Csound book: perspectives in software synthesis, sound design, signal processing, and programming | |
Madden | Fractals in music: introductory mathematics for musical analysis | |
Manaris et al. | JythonMusic: An environment for teaching algorithmic music composition, dynamic coding and musical performativity | |
De Souza | Fretboard transformations | |
Brown | Scratch music projects | |
Rockwell | Banjo transformations and bluegrass rhythm | |
Mazzola | The Topos of Music II: Performance: Theory, Software, and Case Studies | |
Mazzola et al. | The Future of Music | |
Burns | The history and development of algorithms in music composition, 1957-1993 | |
Axford | Music Apps for Musicians and Music Teachers | |
Peterson et al. | Integrating computer science into music education | |
Horn et al. | Introduction to Digital Music with Python Programming: Learning Music with Code | |
Di Scipio | On different approaches to computer music as different models of compositional design | |
Sha’ath | Estimation of key in digital music recordings | |
De Roure et al. | Experimental humanities: An adventure with Lovelace and Babbage | |
Xinhao | The practice of string sound source in computer music production--take pop music production as an example | |
Van Hal | Thwarted Patterns in the Organ Music of Alan Hovhaness | |
De Poli | Sound models for synthesis: a structural viewpoint | |
Mazzola et al. | Software Tools and Hardware Options | |
Savery | Algorithmic improvisers | |
Variego | Composing with constraints: 100 practical exercises in music composition | |
Winterson | Maths & Music | |
McNeilis | Portfolio of Compositions: Pitch-Class Set Theory in Music and Mathematics Volume I: Commentary | |
Wang | A Comprehensive Analysis of Jazz Elements in Nikolai Kapustin’s Violin Sonata Opus 70 and String Quartet Number 1, Opus 88 |