Kumar et al., 2013 - Google Patents
A novel single thruster control strategy for spacecraft attitude stabilizationKumar et al., 2013
- Document ID
- 109491060600905280
- Author
- Kumar K
- Zou A
- et al.
- Publication year
- Publication venue
- Acta Astronautica
External Links
Snippet
Feasibility of achieving three axis attitude stabilization using a single thruster is explored in this paper. Torques are generated using a thruster orientation mechanism with which the thrust vector can be tilted on a two axis gimbal. A robust nonlinear control scheme is …
- 238000011105 stabilization 0 title abstract description 29
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/24—Guiding or controlling apparatus, e.g. for attitude control
- B64G1/28—Guiding or controlling apparatus, e.g. for attitude control using inertia or gyro effect
- B64G1/286—Guiding or controlling apparatus, e.g. for attitude control using inertia or gyro effect using control momentum gyroscopes (CMGs)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/24—Guiding or controlling apparatus, e.g. for attitude control
- B64G1/28—Guiding or controlling apparatus, e.g. for attitude control using inertia or gyro effect
- B64G1/283—Guiding or controlling apparatus, e.g. for attitude control using inertia or gyro effect using reaction wheels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/24—Guiding or controlling apparatus, e.g. for attitude control
- B64G1/36—Guiding or controlling apparatus, e.g. for attitude control using sensors, e.g. sun-sensors, horizon sensors
- B64G1/363—Guiding or controlling apparatus, e.g. for attitude control using sensors, e.g. sun-sensors, horizon sensors using sun sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/24—Guiding or controlling apparatus, e.g. for attitude control
- B64G1/26—Guiding or controlling apparatus, e.g. for attitude control using jets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/24—Guiding or controlling apparatus, e.g. for attitude control
- B64G1/32—Guiding or controlling apparatus, e.g. for attitude control using earth's magnetic field
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/24—Guiding or controlling apparatus, e.g. for attitude control
- B64G2001/245—Spacecraft attitude control, e.g. attitude control algorithms
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
- G05D1/08—Control of attitude, i.e. control of roll, pitch, or yaw
- G05D1/0883—Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for space vehicles
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
- G05D1/08—Control of attitude, i.e. control of roll, pitch, or yaw
- G05D1/0808—Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
- G05D1/0816—Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft to ensure stability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/40—Arrangements or adaptations of propulsion systems
- B64G1/402—Propellant tanks; Feeding propellants
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
- G05D1/0011—Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement
- G05D1/0044—Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement by providing the operator with a computer generated representation of the environment of the vehicle, e.g. virtual reality, maps
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
- G05D1/10—Simultaneous control of position or course in three dimensions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/10—Artificial satellites; Systems of such satellites; Interplanetary vehicles
- B64G1/1014—Navigation satellites
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kumar et al. | A novel single thruster control strategy for spacecraft attitude stabilization | |
Wu et al. | Modeling and sliding mode-based attitude tracking control of a quadrotor UAV with time-varying mass | |
Bayat | Model predictive sliding control for finite-time three-axis spacecraft attitude tracking | |
Mokhtari et al. | Extended state observer based control for coaxial-rotor UAV | |
Wie et al. | Quaternion feedback for spacecraft large angle maneuvers | |
Chovancová et al. | Comparison of various quaternion-based control methods applied to quadrotor with disturbance observer and position estimator | |
Chesi et al. | Aerodynamic three-axis attitude stabilization of a spacecraft by center-of-mass shifting | |
Sun et al. | Neural network-based sliding mode control for atmospheric-actuated spacecraft formation using switching strategy | |
Chen et al. | Asymmetric error-constrained path-following control of a stratospheric airship with disturbances and actuator saturation | |
Chang et al. | Decentralized coordinated attitude control for satellite formation flying via the state-dependent Riccati equation technique | |
Ansari et al. | Robust launch vehicle’s generalized dynamic inversion attitude control | |
Chen et al. | Adaptive path following control of a stratospheric airship with full-state constraint and actuator saturation | |
Lungu et al. | Adaptive Neural Network‐Based Satellite Attitude Control by Using the Dynamic Inversion Technique and a VSCMG Pyramidal Cluster | |
Lee et al. | Fully actuated autonomous flight of thruster-tilting multirotor | |
Ousaloo | Globally asymptotic three-axis attitude control for a two-wheeled small satellite | |
Lin et al. | Specific tracking control of rotating target spacecraft under safe motion constraints | |
Kusuda et al. | Feedback control with nominal inputs for agile satellites using control moment gyros | |
Kojima et al. | Steering control law for double-gimbal scissored-pair CMG | |
Ansari et al. | Generalized dynamic inversion scheme for satellite launch vehicle attitude control | |
Kojima et al. | Experimental study on line-of-sight (LOS) attitude control using control moment gyros under micro-gravity environment | |
Jung et al. | An experimental comparison of CMG steering control laws | |
Ansari et al. | Guidance and robust generalized inversion based attitude control of satellite launch vehicle | |
CN103863578A (en) | Air injection thruster of Mars lander and control moment gyroscope compound control system | |
Kojima et al. | Spacecraft line of sight maneuver control using skew-arrayed two single-gimbal control moment gyros | |
Inumoh et al. | Bounded gain-scheduled LQR satellite control using a tilted wheel |