[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Na et al., 2018 - Google Patents

Highly luminescent cyclometalated iridium complexes generated by nucleophilic addition to coordinated isocyanides

Na et al., 2018

Document ID
1083814681812675441
Author
Na H
Teets T
Publication year
Publication venue
Journal of the American Chemical Society

External Links

Snippet

In this work, we report a new class of blue-emitting cyclometalated iridium complexes supported by acyclic diaminocarbene (ADC) ancillary ligands. These neutral, tris-chelated complexes are not obtainable via traditional synthesis routes and instead are generated …
Continue reading at pubs.acs.org (other versions)

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0073Rhodium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0086Platinum compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/0077Coordination compounds, e.g. porphyrin
    • H01L51/0084Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H01L51/0085Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising Iridium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/0077Coordination compounds, e.g. porphyrin
    • H01L51/0089Metal complexes comprising Lanthanides or Actinides, e.g. Eu
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/50Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
    • H01L51/5012Electroluminescent [EL] layer
    • H01L51/5016Triplet emission

Similar Documents

Publication Publication Date Title
Na et al. Highly luminescent cyclometalated iridium complexes generated by nucleophilic addition to coordinated isocyanides
Lamansky et al. Synthesis and characterization of phosphorescent cyclometalated iridium complexes
Sajoto et al. Temperature dependence of blue phosphorescent cyclometalated Ir (III) complexes
Turner et al. Cyclometalated platinum complexes with luminescent quantum yields approaching 100%
Fernández-Hernández et al. Control of the mutual arrangement of cyclometalated ligands in cationic iridium (III) complexes. Synthesis, spectroscopy, and electroluminescence of the different isomers
Czerwieniec et al. Blue-light emission of Cu (I) complexes and singlet harvesting
Chen et al. Rational design of strongly blue-emitting cuprous complexes with thermally activated delayed fluorescence and application in solution-processed OLEDs
Li et al. Synthetic control of excited-state properties in cyclometalated Ir (III) complexes using ancillary ligands
Brulatti et al. Luminescent Iridium (III) Complexes with N∧ C∧ N-Coordinated Terdentate Ligands: Dual Tuning of the Emission Energy and Application to Organic Light-Emitting Devices
Liu et al. Synthesis and electrophosphorescence of iridium complexes containing benzothiazole-based ligands
Li et al. Metal-assisted delayed fluorescent Pd (II) complexes and phosphorescent Pt (II) complex based on [1, 2, 4] triazolo [4, 3-a] pyridine-containing ligands: synthesis, characterization, electrochemistry, photophysical studies, and application
Liu et al. “Click” synthesis of heteroleptic tris-cyclometalated iridium (III) complexes: Cu (I) triazolide intermediates as transmetalating reagents
Adamovich et al. Preparation of tris-heteroleptic iridium (III) complexes containing a cyclometalated aryl-N-heterocyclic carbene ligand
Pal et al. Blue-to-green emitting neutral Ir (III) complexes bearing pentafluorosulfanyl groups: a combined experimental and theoretical study
Tamura et al. Efficient Synthesis of Tris-Heteroleptic Iridium (III) Complexes Based on the Zn2+-Promoted Degradation of Tris-Cyclometalated Iridium (III) Complexes and Their Photophysical Properties
Tamura et al. Stereospecific synthesis of tris-heteroleptic tris-cyclometalated Iridium (III) complexes via different heteroleptic halogen-bridged iridium (III) dimers and their photophysical properties
Takayasu et al. Intermolecular Interactions and Aggregation of fac-Tris (2-phenylpyridinato-C 2, N) iridium (III) in Nonpolar Solvents
Dedeian et al. Blue Phosphorescence from Mixed Cyano− Isocyanide Cyclometalated Iridium (III) Complexes
Adamovich et al. Preparation via a NHC dimer complex, photophysical properties, and device performance of heteroleptic bis (tridentate) iridium (III) emitters
Chaaban et al. Thiazol-2-thiolate-bridged binuclear platinum (II) complexes with high photoluminescence quantum efficiencies of up to near unity
Na et al. Photoluminescence of cyclometalated iridium complexes in poly (methyl methacrylate) films
Wang et al. Cationic iridium complexes with 5-phenyl-1 H-1, 2, 4-triazole type cyclometalating ligands: toward blue-shifted emission
Cudré et al. Tris-heteroleptic iridium complexes based on cyclometalated ligands with different cores
Mandapati et al. Deep-red luminescence from platinum (II) complexes of N^ N–^ N-amido ligands with benzannulated N-heterocyclic donor arms
Liao et al. Iridium (III) complexes bearing tridentate chromophoric chelate: phosphorescence fine-tuned by phosphine and hydride ancillary