Toledo et al., 2019 - Google Patents
A 300mv-supply, 2nw-power, 80pf-load cmos digital-based ota for iot interfacesToledo et al., 2019
View PDF- Document ID
- 10805200551366188778
- Author
- Toledo P
- Crovetti P
- Klimach H
- Bampi S
- Publication year
- Publication venue
- 2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS)
External Links
Snippet
This paper presents a power-efficient Ultra Low Voltage (ULV) Digital-Based Operational Transconductance Amplifier (DB-OTA), which uses static logic gates and processes digitally the analog input signal. Post-layout simulations in 180nm CMOS technology show that at …
- 238000005516 engineering process 0 abstract description 9
Classifications
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
- H03F3/45071—Differential amplifiers with semiconductor devices only
- H03F3/45076—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
- H03F3/45179—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
- H03F3/45183—Long tailed pairs
- H03F3/45192—Folded cascode stages
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
- H03F3/45071—Differential amplifiers with semiconductor devices only
- H03F3/45076—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
- H03F3/45179—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
- H03F3/45183—Long tailed pairs
- H03F3/45188—Non-folded cascode stages
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
- H03F3/45071—Differential amplifiers with semiconductor devices only
- H03F3/45076—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
- H03F3/45179—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
- H03F3/45197—Pl types
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
- H03F3/45071—Differential amplifiers with semiconductor devices only
- H03F3/45479—Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection
- H03F3/45928—Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
- H03F3/45071—Differential amplifiers with semiconductor devices only
- H03F3/45076—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
- H03F3/45278—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using BiFET transistors as the active amplifying circuit
- H03F3/45282—Long tailed pairs
- H03F3/45291—Folded cascode stages
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/30—Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor
- H03F3/3001—Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor with field-effect transistors
- H03F3/3022—CMOS common source output SEPP amplifiers
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/21—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/45—Indexing scheme relating to differential amplifiers
- H03F2203/45101—Control of the DC level being present
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/189—High frequency amplifiers, e.g. radio frequency amplifiers
- H03F3/19—High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/45—Indexing scheme relating to differential amplifiers
- H03F2203/45392—Indexing scheme relating to differential amplifiers the AAC comprising resistors in the source circuit of the AAC before the common source coupling
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/08—Modification of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/181—Low frequency amplifiers, e.g. audio preamplifiers
- H03F3/183—Low frequency amplifiers, e.g. audio preamplifiers with semiconductor devices only
- H03F3/185—Low frequency amplifiers, e.g. audio preamplifiers with semiconductor devices only with field-effect devices
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/30—Indexing scheme relating to single-ended push-pull [SEPP]; Phase-splitters therefor
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K3/00—Circuits for generating electric pulses; Monostable, bistable or multistable circuits
- H03K3/02—Generators characterised by the type of circuit or by the means used for producing pulses
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Toledo et al. | A 300mv-supply, 2nw-power, 80pf-load cmos digital-based ota for iot interfaces | |
Mak et al. | A $0.7\;\text {V}\; 24\;\upmu\text {A} $ Hybrid OTA Driving 15 nF Capacitive Load With 1.46 MHz GBW | |
Harjani et al. | An integrated low-voltage class AB CMOS OTA | |
US8279004B2 (en) | System for driver amplifier | |
US20200014351A1 (en) | Stacked power amplifiers using core devices | |
Toledo et al. | A 300mV-supply standard-cell-based OTA with digital PWM offset calibration | |
US20100231301A1 (en) | Amplifier circuit | |
US7187236B2 (en) | Rail-to-rail differential input amplification stage with main and surrogate differential pairs | |
Akbari et al. | Implementation of a multipath fully differential OTA in 0.18-μm CMOS Process | |
Goyal et al. | Analysis and design of a two stage cmos op-amp with 180nm using miller compensation technique | |
Torfifard et al. | A Power‐Efficient CMOS Adaptive Biasing Operational Transconductance Amplifier | |
Garde et al. | Folded cascode ota with 5540 mhzpf/ma fom | |
Martin et al. | Design of Two‐Stage Class AB CMOS Buffers: A Systematic Approach | |
CN215682235U (en) | Circuit and comparator | |
JP2007129512A (en) | Power amplifier and its idling current setting circuit | |
CN104579315B (en) | The C class phase inverters of high-gain and output voltage swing wide are realized simultaneously | |
Mahendra et al. | Low voltage high performance fully balanced operational transconductance amplifier with improved slew rate | |
Zhang et al. | A high-slew rate rail-to-rail operational amplifier by flipped voltage followers | |
CN116505900A (en) | High-speed small signal amplifying circuit | |
CN100550606C (en) | Circuit arrangement with different common mode I/O voltage | |
Bhatkar et al. | A 90nm low power OTA using adaptive bias | |
Hussain et al. | A 45nm ultra-low power operational amplifier with high gain and high CMRR | |
Choe et al. | Ultra-low-power class-AB bulk-driven OTA with enhanced transconductance | |
Majumder et al. | An ultralow-power low-voltage Class-AB Fully Differential Op Amp with cascoded input stage and indirect compensation | |
Sundari et al. | Two rail-to-rail class-AB CMOS buffers with high performance slew rate and delay |