[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Li et al., 2019 - Google Patents

FilterNet: Adaptive information filtering network for accurate and fast image super-resolution

Li et al., 2019

View PDF
Document ID
10873105379709563005
Author
Li F
Bai H
Zhao Y
Publication year
Publication venue
IEEE Transactions on Circuits and Systems for Video Technology

External Links

Snippet

Deep convolutional neural network (CNN) approaches have achieved impressive performance for image super-resolution (SR). The main issue of image SR is to effectively recover the high-frequency detail of low-resolution (LR) input. However, existing CNN …
Continue reading at mepro.bjtu.edu.cn (PDF) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • G06K9/6232Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
    • G06K9/6247Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/36Image preprocessing, i.e. processing the image information without deciding about the identity of the image
    • G06K9/46Extraction of features or characteristics of the image
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6268Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformation in the plane of the image, e.g. from bit-mapped to bit-mapped creating a different image
    • G06T3/40Scaling the whole image or part thereof
    • G06T3/4053Super resolution, i.e. output image resolution higher than sensor resolution
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformation in the plane of the image, e.g. from bit-mapped to bit-mapped creating a different image
    • G06T3/40Scaling the whole image or part thereof
    • G06T3/4084Transform-based scaling, e.g. FFT domain scaling
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20048Transform domain processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20172Image enhancement details
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6201Matching; Proximity measures
    • G06K9/6202Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration, e.g. from bit-mapped to bit-mapped creating a similar image
    • G06T5/001Image restoration
    • G06T5/002Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation

Similar Documents

Publication Publication Date Title
Li et al. FilterNet: Adaptive information filtering network for accurate and fast image super-resolution
Anwar et al. Densely residual laplacian super-resolution
US20210264568A1 (en) Super resolution using a generative adversarial network
Ledig et al. Photo-realistic single image super-resolution using a generative adversarial network
Lai et al. Deep laplacian pyramid networks for fast and accurate super-resolution
Gu et al. A brief review of image denoising algorithms and beyond
Yu et al. A unified learning framework for single image super-resolution
Wang et al. Self-tuned deep super resolution
Zhang et al. High-quality image restoration using low-rank patch regularization and global structure sparsity
Ahn et al. Image super-resolution via progressive cascading residual network
Zhang et al. Image super-resolution based on structure-modulated sparse representation
Zhang et al. Single image super-resolution with multiscale similarity learning
Ren et al. Single image super-resolution via adaptive high-dimensional non-local total variation and adaptive geometric feature
Ren et al. Single image super-resolution using local geometric duality and non-local similarity
Cao et al. Image Super-Resolution via Adaptive $\ell _ {p}(0< p< 1) $ Regularization and Sparse Representation
Tang et al. Deep inception-residual Laplacian pyramid networks for accurate single-image super-resolution
WO2016019484A1 (en) An apparatus and a method for providing super-resolution of a low-resolution image
Ren et al. Enhanced non-local total variation model and multi-directional feature prediction prior for single image super resolution
Wei et al. A-ESRGAN: Training real-world blind super-resolution with attention U-Net Discriminators
Thapa et al. A performance comparison among different super-resolution techniques
Liu et al. Multi-scale residual hierarchical dense networks for single image super-resolution
Gan et al. AutoBCS: Block-based image compressive sensing with data-driven acquisition and noniterative reconstruction
Rashid et al. Single MR image super-resolution using generative adversarial network
Wang et al. Image super-resolution using multi-granularity perception and pyramid attention networks
Chen et al. Attention-based broad self-guided network for low-light image enhancement