[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Tahar, 2012 - Google Patents

Aerial terrain mapping using unmanned aerial vehicle approach

Tahar, 2012

View PDF
Document ID
10622995869231979464
Author
Tahar K
Publication year
Publication venue
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences

External Links

Snippet

This paper looks into the latest achievement in the low-cost Unmanned Aerial Vehicle (UAV) technology in their capacity to map the semi-development areas. The objectives of this study are to establish a new methodology or a new algorithm in image registration during interior …
Continue reading at isprs-archives.copernicus.org (PDF) (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in preceding groups
    • G01C21/10Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/02Picture taking arrangements specially adapted for photogrammetry or photographic surveying, e.g. controlling overlapping of pictures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/04Interpretation of pictures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in preceding groups
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in preceding groups
    • G01C21/26Navigation; Navigational instruments not provided for in preceding groups specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in preceding groups specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • G01C21/30Map- or contour-matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in preceding groups
    • G01C21/005Navigation; Navigational instruments not provided for in preceding groups with correlation of navigation data from several sources, e.g. map or contour matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/53Determining attitude
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. correcting range migration errors
    • G01S13/9035Particular SAR processing techniques not provided for elsewhere, e.g. squint mode, doppler beam-sharpening mode, spotlight mode, bistatic SAR, inverse SAR

Similar Documents

Publication Publication Date Title
Samad et al. The potential of Unmanned Aerial Vehicle (UAV) for civilian and mapping application
Tahar An evaluation on different number of ground control points in unmanned aerial vehicle photogrammetric block
Tahar Aerial terrain mapping using unmanned aerial vehicle approach
Uysal et al. DEM generation with UAV Photogrammetry and accuracy analysis in Sahitler hill
Ahmad Digital mapping using low altitude UAV
Nex et al. UAV for 3D mapping applications: a review
Pérez et al. Low cost surveying using an unmanned aerial vehicle
Gabrlik The use of direct georeferencing in aerial photogrammetry with micro UAV
KR102075028B1 (en) Unmanned High-speed Flying Precision Position Image Acquisition Device and Accurate Position Acquisition Method Using the same
US20170124745A1 (en) Method and system of stitching aerial data using information from previous aerial images
Tahar et al. A simulation study on the capabilities of rotor wing unmanned aerial vehicle in aerial terrain mapping
Ahmad et al. Digital aerial imagery of unmanned aerial vehicle for various applications
Hosseinpoor et al. Pricise target geolocation and tracking based on UAV video imagery
Herrero-Huerta et al. Vicarious radiometric calibration of a multispectral sensor from an aerial trike applied to precision agriculture
Berteška et al. Photogrammetric mapping based on UAV imagery
Tahar et al. UAV-based stereo vision for photogrammetric survey in aerial terrain mapping
Liu et al. Rapidly responding to landslides and debris flow events using a low-cost unmanned aerial vehicle
Tahar Multi rotor UAV at different altitudes for slope mapping studies
Tahar et al. Unmanned aerial vehicle technology for large scale mapping
Ahmad et al. Aerial mapping using high resolution digital camera and unmanned aerial vehicle for Geographical Information System
Ruzgienė et al. UAV photogrammetry for road surface modelling
Tahar A new approach on slope data acquisition using unmanned aerial vehicle
Daramola et al. Assessing the geometric accuracy of UAV-based orthophotos
Tahar et al. Aerial mapping using autonomous fixed-wing unmanned aerial vehicle
Graça et al. Photogrammetric mapping using unmanned aerial vehicle