[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Xie et al., 2009 - Google Patents

Classification of tomatoes with different genotypes by visible and short-wave near-infrared spectroscopy with least-squares support vector machines and other …

Xie et al., 2009

Document ID
10619076321548494482
Author
Xie L
Ying Y
Ying T
Publication year
Publication venue
Journal of food engineering

External Links

Snippet

The feasibility of using visible and short-wave near-infrared (Vis/SW NIR) diffuse reflectance spectroscopic technique in the 400–1000nm region to classify tomatoes with different genotypes was investigated. The discrimination performance of different chemometrics …
Continue reading at www.sciencedirect.com (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infra-red light
    • G01N21/3577Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infra-red light for analysing liquids, e.g. polluted water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infra-red light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infra-red light using near infra-red light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infra-red light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infra-red light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/3155Measuring in two spectral ranges, e.g. UV and visible
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • G06K9/6232Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
    • G06K9/6247Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6268Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/02Investigating or analysing materials by specific methods not covered by the preceding groups food
    • G01N33/14Investigating or analysing materials by specific methods not covered by the preceding groups food beverages
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/129Using chemometrical methods
    • G01N2201/1293Using chemometrical methods resolving multicomponent spectra
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/48Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing

Similar Documents

Publication Publication Date Title
Xie et al. Classification of tomatoes with different genotypes by visible and short-wave near-infrared spectroscopy with least-squares support vector machines and other chemometrics
Bai et al. Accurate prediction of soluble solid content of apples from multiple geographical regions by combining deep learning with spectral fingerprint features
Xu et al. Raman spectroscopy coupled with chemometrics for food authentication: A review
Ma et al. Rapid and non-destructive seed viability prediction using near-infrared hyperspectral imaging coupled with a deep learning approach
Weng et al. Rapid detection of adulteration of minced beef using Vis/NIR reflectance spectroscopy with multivariate methods
Zheng et al. Spectroscopy-based food classification with extreme learning machine
Riedl et al. Review of validation and reporting of non-targeted fingerprinting approaches for food authentication
Yu et al. A feasibility study on on-line determination of rice wine composition by Vis–NIR spectroscopy and least-squares support vector machines
Liu et al. Comparison of calibrations for the determination of soluble solids content and pH of rice vinegars using visible and short-wave near infrared spectroscopy
Liu et al. Determination of effective wavelengths for discrimination of fruit vinegars using near infrared spectroscopy and multivariate analysis
Mishra et al. Partial least square regression versus domain invariant partial least square regression with application to near-infrared spectroscopy of fresh fruit
Shao et al. Visible/near-infrared spectra for linear and nonlinear calibrations: a case to predict soluble solids contents and pH value in peach
Bao et al. Measurement of soluble solid contents and pH of white vinegars using VIS/NIR spectroscopy and least squares support vector machine
Li et al. Determination of soluble solid content in multi-origin ‘Fuji’apples by using FT-NIR spectroscopy and an origin discriminant strategy
Jia et al. A newly developed method to extract the optimal hyperspectral feature for monitoring leaf biomass in wheat
Yang et al. Detection of adulterated milk using two-dimensional correlation spectroscopy combined with multi-way partial least squares
Deng et al. A feature-selection algorithm based on support vector machine-multiclass for hyperspectral visible spectral analysis
Liu et al. A comparative study for least angle regression on NIR spectra analysis to determine internal qualities of navel oranges
Wu et al. Short-wave near-infrared spectroscopy of milk powder for brand identification and component analysis
Goyal et al. Spectroscopic food adulteration detection using machine learning: Current challenges and future prospects
Amsaraj et al. Variable selection coupled to PLS2, ANN and SVM for simultaneous detection of multiple adulterants in milk using spectral data
Jiang et al. Rapid nondestructive detecting of wheat varieties and mixing ratio by combining hyperspectral imaging and ensemble learning
Zhang et al. Classification detection of saccharin jujube based on hyperspectral imaging technology
Yu et al. Prediction of enological parameters and discrimination of rice wine age using least-squares support vector machines and near infrared spectroscopy
Xu et al. Combining local wavelength information and ensemble learning to enhance the specificity of class modeling techniques: Identification of food geographical origins and adulteration