Jackson et al., 2019 - Google Patents
Static connectivity of stacked deep-water channel elements constrained by high-resolution digital outcrop modelsJackson et al., 2019
- Document ID
- 1067916920168130644
- Author
- Jackson A
- Stright L
- Hubbard S
- Romans B
- Publication year
- Publication venue
- AAPG Bulletin
External Links
Snippet
High-resolution digital outcrop models of stacked deep-water channel elements are constructed from the Laguna Figueroa section of the well-exposed Upper Cretaceous Tres Pasos Formation in Chilean Patagonia. The models are based on greater than 1600 m (> …
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water   O 0 title abstract description 26
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/60—Analysis
- G01V2210/66—Subsurface modeling
- G01V2210/665—Subsurface modeling using geostatistical modeling
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/60—Analysis
- G01V2210/61—Analysis by combining or comparing a seismic data set with other data
- G01V2210/616—Data from specific type of measurement
- G01V2210/6163—Electromagnetic
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. analysis, for interpretation, for correction
- G01V1/282—Application of seismic models, synthetic seismograms
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. analysis, for interpretation, for correction
- G01V1/30—Analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V99/00—Subject matter not provided for in other groups of this subclass
- G01V99/005—Geomodels or geomodelling, not related to particular measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/60—Analysis
- G01V2210/67—Wave propagation modeling
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. analysis, for interpretation, for correction
- G01V1/34—Displaying seismic recordings or visualisation of seismic data or attributes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/60—Analysis
- G01V2210/62—Physical property of subsurface
- G01V2210/624—Reservoir parameters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/12—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V11/00—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/38—Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/40—Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
- G01V1/42—Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging using generators in one well and receivers elsewhere or vice versa
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/38—Processing data, e.g. for analysis, for interpretation, for correction
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH DRILLING; MINING
- E21B—EARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/01—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
- E21B43/017—Production satellite stations, i.e. underwater installations comprising a plurality of satellite well heads connected to a central station
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V9/00—Prospecting or detecting by methods not provided for in groups G01V1/00 - G01V8/00
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fonnesu et al. | A new world-class deep-water play-type, deposited by the syndepositional interaction of turbidity flows and bottom currents: The giant Eocene Coral Field in northern Mozambique | |
Michael et al. | Combining geologic‐process models and geostatistics for conditional simulation of 3‐D subsurface heterogeneity | |
Jackson et al. | Static connectivity of stacked deep-water channel elements constrained by high-resolution digital outcrop models | |
Deveugle et al. | Characterization of stratigraphic architecture and its impact on fluid flow in a fluvial-dominated deltaic reservoir analog: Upper Cretaceous Ferron Sandstone Member, Utah | |
Al-Mudhafar | Multiple–point geostatistical lithofacies simulation of fluvial sand–rich depositional environment: a case study from zubair formation/South rumaila oil field | |
Labourdette | Integrated three-dimensional modeling approach of stacked turbidite channels | |
Schetselaar | Mapping the 3D lithofacies architecture of a VMS ore system on a curvilinear-faulted grid: A case study from the Flin Flon mining camp, Canada | |
Colombera et al. | Seismic-driven geocellular modeling of fluvial meander-belt reservoirs using a rule-based method | |
AlRassas et al. | Integrated static modeling and dynamic simulation framework for CO 2 storage capacity in Upper Qishn Clastics, S1A reservoir, Yemen | |
Labourdette et al. | Three-dimensional modelling of stacked turbidite channels inWest Africa: impact on dynamic reservoir simulations | |
Fustic et al. | Reservoir modeling by constraining stochastic simulation to deterministically interpreted three-dimensional geobodies: Case study from Lower Cretaceous McMurray Formation, Long Lake steam-assisted gravity drainage project, Northeast Alberta, Canada | |
Pemberton et al. | The influence of stratigraphic architecture on seismic response: Reflectivity modeling of outcropping deepwater channel units | |
Al-Mudhafar | How is multiple-point geostatistics of lithofacies modeling assisting for fast history matching? A case study from a sand-rich fluvial depositional environment of Zubair formation in South Rumaila oil field | |
Sahoo et al. | Creating three-dimensional channel bodies in LiDAR-integrated outcrop characterization: A new approach for improved stratigraphic analysis | |
Kim et al. | Lithofacies modeling by multipoint statistics and economic evaluation by NPV volume for the early Cretaceous Wabiskaw Member in Athabasca oilsands area, Canada | |
Ma et al. | Integrated reservoir modeling of a Pinedale tight-gas reservoir in the Greater Green River Basin, Wyoming | |
Ren et al. | High-resolution geostatistical modeling of an intensively drilled heavy oil reservoir, the BQ 10 block, Biyang Sag, Nanxiang Basin, China | |
Larue et al. | Fluvial reservoir architecture, directional heterogeneity and continuity, recognizing incised valley fills, and the case for nodal avulsion on a distributive fluvial system: Kern River field, California | |
Sun et al. | Architectural analysis of subsurface meander-belt sandstones: A case study of a densely drilled oil field, Zhanhua sag, east of Bohai Bay Basin | |
Julio et al. | Impact of the en echelon fault connectivity on reservoir flow simulations | |
Rezaei et al. | Seismic data integration workflow in pluri-Gaussian simulation: application to a heterogeneous carbonate reservoir in southwestern Iran | |
Jean et al. | Three-dimensional geologic model of southeastern Tertiary coastal-plain sediments, Savannah River Site, South Carolina: An applied geostatistical approach for environmental applications | |
Eahsanul Haque et al. | Integrated 3D facies modeling of the Mangahewa Formation, Maui Gas Field, Taranaki Basin, New Zealand | |
Mullins et al. | Combining process-based models and multiple-point geostatistics for improved reservoir modelling | |
Amer | New approach to modeling your reservoir: a technique based on understanding modern deposits, outcrops and well-log data |