Das et al., 2024 - Google Patents
A role for retro-splenial cortex in the task-related P3 networkDas et al., 2024
View HTML- Document ID
- 10672240467568609253
- Author
- Das D
- Shaw M
- Hämäläinen M
- Dykstra A
- Doll L
- Gutschalk A
- Publication year
- Publication venue
- Clinical Neurophysiology
External Links
Snippet
Objective The P3 is an event-related response observed in relation to task-relevant sensory events. Despite its ubiquitous presence, the neural generators of the P3 are controversial and not well identified. Methods We compared source analysis of combined magneto-and …
- 238000000537 electroencephalography 0 abstract description 163
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/04—Detecting, measuring or recording bioelectric signals of the body of parts thereof
- A61B5/0476—Electroencephalography
- A61B5/0484—Electroencephalography using evoked response
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7253—Details of waveform analysis characterised by using transforms
- A61B5/7257—Details of waveform analysis characterised by using transforms using Fourier transforms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/04—Detecting, measuring or recording bioelectric signals of the body of parts thereof
- A61B5/0476—Electroencephalography
- A61B5/048—Detecting the frequency distribution of signals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/04—Detecting, measuring or recording bioelectric signals of the body of parts thereof
- A61B5/0402—Electrocardiography, i.e. ECG
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/04—Detecting, measuring or recording bioelectric signals of the body of parts thereof
- A61B5/0488—Electromyography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radiowaves
- A61B5/055—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radiowaves involving electronic or nuclear magnetic resonance, e.g. magnetic resonance imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7203—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/04—Detecting, measuring or recording bioelectric signals of the body of parts thereof
- A61B5/04012—Analysis of electro-cardiograms, electro-encephalograms, electro-myograms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/40—Detecting, measuring or recording for evaluating the nervous system
- A61B5/4076—Diagnosing or monitoring particular conditions of the nervous system
- A61B5/4094—Diagnosing or monitoring seizure diseases, e.g. epilepsy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/16—Devices for psychotechnics; Testing reaction times; Devices for evaluating the psychological state
- A61B5/164—Lie detection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/0033—Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
- A61B5/004—Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/40—Detecting, measuring or recording for evaluating the nervous system
- A61B5/4058—Detecting, measuring or recording for evaluating the nervous system for evaluating the central nervous system
- A61B5/4064—Evaluating the brain
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/16—Devices for psychotechnics; Testing reaction times; Devices for evaluating the psychological state
- A61B5/165—Evaluating the state of mind, e.g. depression, anxiety
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/4806—Functional imaging of brain activation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6813—Specially adapted to be attached to a specific body part
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pizzagalli | Electroencephalography and high-density electrophysiological source localization | |
Mantini et al. | A signal-processing pipeline for magnetoencephalography resting-state networks | |
US11042982B2 (en) | Ultra-dense electrode-based brain imaging system | |
Tsuchimoto et al. | Use of common average reference and large-Laplacian spatial-filters enhances EEG signal-to-noise ratios in intrinsic sensorimotor activity | |
Astolfi et al. | Assessing cortical functional connectivity by linear inverse estimation and directed transfer function: simulations and application to real data | |
Alexander et al. | Traveling waves and trial averaging: the nature of single-trial and averaged brain responses in large-scale cortical signals | |
Makeig et al. | Electroencephalographic brain dynamics following manually responded visual targets | |
de Munck et al. | The hemodynamic response of the alpha rhythm: an EEG/fMRI study | |
Gramfort et al. | MNE software for processing MEG and EEG data | |
Cheyne et al. | Event-related beamforming: a robust method for presurgical functional mapping using MEG | |
Liljeström et al. | Neuromagnetic localization of rhythmic activity in the human brain: a comparison of three methods | |
Wikswo Jr et al. | The future of the EEG and MEG | |
Moeller et al. | Representation and propagation of epileptic activity in absences and generalized photoparoxysmal responses | |
Andersen et al. | Somatosensory responses to nothing: An MEG study of expectations during omission of tactile stimulations | |
Papadelis et al. | MEG’s ability to localise accurately weak transient neural sources | |
Llinás et al. | Reconstruction of human brain spontaneous activity based on frequency-pattern analysis of magnetoencephalography data | |
Mangalathu-Arumana et al. | Within-subject joint independent component analysis of simultaneous fMRI/ERP in an auditory oddball paradigm | |
He et al. | Electrophysiological mapping and neuroimaging | |
Im et al. | Spatial resolution of EEG cortical source imaging revealed by localization of retinotopic organization in human primary visual cortex | |
Storti et al. | A multimodal imaging approach to the evaluation of post-traumatic epilepsy | |
Goebel et al. | The added value of EEG-fMRI in imaging neuroscience | |
Khalid et al. | Epileptic MEG spikes detection using amplitude thresholding and dynamic time warping | |
Wang et al. | Improvement in EEG source imaging accuracy by means of wavelet packet transform and subspace component selection | |
Siniatchkin et al. | Spatial filters and automated spike detection based on brain topographies improve sensitivity of EEG–fMRI studies in focal epilepsy | |
Das et al. | A role for retro-splenial cortex in the task-related P3 network |