[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Geiger et al., 2019 - Google Patents

Understanding aging in chalcogenide glass thin films using precision resonant cavity refractometry

Geiger et al., 2019

View HTML @Full View
Document ID
10434971150698879904
Author
Geiger S
Du Q
Huang B
Shalaginov M
Michon J
Lin H
Gu T
Yadav A
Richardson K
Jia X
Hu J
Publication year
Publication venue
Optical Materials Express

External Links

Snippet

Chalcogenide glass (ChG) thin films have a wide range of applications in planar photonics that rely on the stability of their optical properties. However, most methods do not provide quantitative optical property data at sufficiently high resolution. We have employed a …
Continue reading at opg.optica.org (HTML) (other versions)

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/10Light guides of the optical waveguide type
    • G02B6/12Light guides of the optical waveguide type of the integrated circuit kind
    • G02B6/122Light guides of the optical waveguide type of the integrated circuit kind basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/10Light guides of the optical waveguide type
    • G02B6/12Light guides of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/10Light guides of the optical waveguide type
    • G02B6/12Light guides of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/10Light guides of the optical waveguide type
    • G02B6/107Subwavelength-diameter waveguides, e.g. nanowires
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/02Optical fibre with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • GPHYSICS
    • G02OPTICS
    • G02FDEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • GPHYSICS
    • G02OPTICS
    • G02FDEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N2021/653Coherent methods [CARS]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FDEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro or nano materials

Similar Documents

Publication Publication Date Title
Lin et al. Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators
Chow et al. Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity
Briggs et al. Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition
Richardson et al. Advances in infrared gradient refractive index (GRIN) materials: a review
Geiger et al. Understanding aging in chalcogenide glass thin films using precision resonant cavity refractometry
Lu et al. Integrated temperature sensor based on an enhanced pyroelectric photonic crystal
Markos et al. Chalcogenide glass layers in silica photonic crystal fibers
Hu et al. Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow
Hiltunen et al. Polymeric slot waveguide interferometer for sensor applications
Hu et al. Demonstration of chalcogenide glass racetrack microresonators
Siraji et al. High-sensitivity and high-Q-factor glass photonic crystal cavity and its applications as sensors
Reshef et al. Polycrystalline anatase titanium dioxide microring resonators with negative thermo-optic coefficient
Palka et al. Preparation of arsenic sulfide thin films for integrated optical elements by spiral bar coating
Talukdar et al. Single-mode porous silicon waveguide interferometers with unity confinement factors for ultra-sensitive surface adlayer sensing
Qiu et al. Fano resonance-based highly sensitive, compact temperature sensor on thin film lithium niobate
Richardson et al. Advances in infrared GRIN: a review of novel materials towards components and devices
Levy et al. High-Q ring resonators directly written in As 2 S 3 chalcogenide glass films
Socorro et al. Temperature sensor based on a hybrid ITO-silica resonant cavity
Choi et al. Studying polymer thin films with hybrid optical microcavities
Nazabal et al. Chalcogenide coatings of ge 15 sb 20 s 65 and te 20 as 30 se 50
Wang et al. Mode splitting in high-index-contrast grating with mini-scale finite size
Qiu et al. Athermal silicon nitride ring resonator by photobleaching of Disperse Red 1-doped poly (methyl methacrylate) polymer
Bankwitz et al. High-quality factor Ta 2 O 5-on-insulator resonators with ultimate thermal stability
Chu et al. Fabrication and analysis of tantalum pentoxide optical waveguide resonator of high thermal stability
Califa et al. Large one-time photo-induced tuning of directional couplers in chalcogenide-on-silicon platform