Liang et al., 2016 - Google Patents
Blade pitch control of straight-bladed vertical axis wind turbineLiang et al., 2016
- Document ID
- 10432248407096955827
- Author
- Liang Y
- Zhang L
- Li E
- Zhang F
- Publication year
- Publication venue
- Journal of Central South University
External Links
Snippet
Collective pitch control and individual pitch control algorithms were present for straight- bladed vertical axis wind turbine to improve the self-starting capacity. Comparative analysis of straight-bladed vertical axis wind turbine (SB-VAWT) with or without pitch control was …
- 238000010835 comparative analysis 0 abstract description 4
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
- Y02E10/722—Components or gearbox
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/74—Wind turbines with rotation axis perpendicular to the wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
- Y02E10/723—Control of turbines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
- Y02E10/721—Blades or rotors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
- Y02E10/725—Generator or configuration
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/76—Power conversion electric or electronic aspects
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
- Y02E10/22—Conventional, e.g. with dams, turbines and waterwheels
- Y02E10/223—Turbines or waterwheels, e.g. details of the rotor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING WEIGHT AND MISCELLANEOUS MOTORS; PRODUCING MECHANICAL POWER; OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D3/00—Wind motors with rotation axis substantially at right-angles to wind direction
- F03D3/06—Rotor
- F03D3/061—Form
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING WEIGHT AND MISCELLANEOUS MOTORS; PRODUCING MECHANICAL POWER; OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially in wind direction
- F03D7/022—Adjusting aerodynamic properties of the blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING WEIGHT AND MISCELLANEOUS MOTORS; PRODUCING MECHANICAL POWER; OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D3/00—Wind motors with rotation axis substantially at right-angles to wind direction
- F03D3/06—Rotor
- F03D3/062—Construction
- F03D3/067—Construction the wind engaging parts having a cyclic movement relative to the rotor during its rotation
- F03D3/068—Construction the wind engaging parts having a cyclic movement relative to the rotor during its rotation the cyclic relative movement being coupled to the movement of rotation; Controlling same, e.g. according to wind direction or force
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO MACHINES OR ENGINES OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, TO WIND MOTORS, TO NON-POSITIVE DISPLACEMENT PUMPS, AND TO GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY
- F05B2240/00—Components
- F05B2240/20—Rotors
- F05B2240/21—Rotors for wind turbines
- F05B2240/211—Rotors for wind turbines with vertical axis
- F05B2240/214—Rotors for wind turbines with vertical axis of the Musgrove or "H"-type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO MACHINES OR ENGINES OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, TO WIND MOTORS, TO NON-POSITIVE DISPLACEMENT PUMPS, AND TO GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY
- F05B2240/00—Components
- F05B2240/90—Mounting on supporting structures or systems
- F05B2240/91—Mounting on supporting structures or systems on a stationary structure
- F05B2240/911—Mounting on supporting structures or systems on a stationary structure already existing for a prior purpose
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING WEIGHT AND MISCELLANEOUS MOTORS; PRODUCING MECHANICAL POWER; OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially in wind direction
- F03D1/04—Wind motors with rotation axis substantially in wind direction having stationary wind-guiding means, e.g. with shrouds or channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO MACHINES OR ENGINES OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, TO WIND MOTORS, TO NON-POSITIVE DISPLACEMENT PUMPS, AND TO GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY
- F05B2260/00—Function
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO MACHINES OR ENGINES OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, TO WIND MOTORS, TO NON-POSITIVE DISPLACEMENT PUMPS, AND TO GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY
- F05B2250/00—Geometry
- F05B2250/20—Geometry three-dimensional
- F05B2250/23—Geometry three-dimensional prismatic
- F05B2250/231—Geometry three-dimensional prismatic cylindrical
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/30—Wind power
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liang et al. | Blade pitch control of straight-bladed vertical axis wind turbine | |
Zhang et al. | Effect of blade pitch angle on aerodynamic performance of straight-bladed vertical axis wind turbine | |
Kiwata et al. | Performance of a vertical axis wind turbine with variable-pitch straight blades utilizing a linkage mechanism | |
US10012210B2 (en) | Horizontal-axis wind turbine using airfoil blades with uniform width and thickness | |
Guang et al. | Hydrodynamic performance of a vertical-axis tidal-current turbine with different preset angles of attack | |
Torresi et al. | Performance and flow field evaluation of a Savonius rotor tested in a wind tunnel | |
Didane et al. | Performance investigation of vertical axis wind turbine with savonius rotor using computational fluid dynamics (CFD) | |
Zhang et al. | Vertical axis wind turbine with individual active blade pitch control | |
Li et al. | Numerical study on the performance effect of solidity on the straight-bladed vertical axis wind turbine | |
Zhang et al. | The hydrodynamic characteristics of free variable-pitch vertical axis tidal turbine | |
Sun et al. | Power performance and self-starting features of H-rotor and helical vertical axis wind turbines with different airfoils in turbulence | |
US11313348B2 (en) | Hybrid vertical axis turbine apparatus | |
Danao et al. | Effects on the performance of vertical axis wind turbines with unsteady wind inflow: A numerical study | |
Yoon et al. | Study of several design parameters on multi-blade vertical axis wind turbine | |
Zhang et al. | Study on synchronous variable-pitch vertical axis wind turbine | |
Eboibi et al. | A numerical study of the influence of blade profile and solidity on the performances of vertical axis wind turbines | |
Siddiqui et al. | Performance evaluation of H-type Darrieus VAWT with J-shaped blade geometry at variable pitch angles | |
Labib et al. | Effect of blade angle on aerodynamic performance of Archimedes spiral wind turbine | |
Al-Abadi et al. | Development of an experimental setup for double rotor HAWT investigation | |
Shrivastava | Efficiency improvement of a straight-bladed vertical axis wind turbine | |
Woods et al. | Simulation of vertical axis wind turbines with variable pitch foils | |
Wangikar et al. | Effect of some design parameters on performance of a shutter type vertical axis wind turbine | |
Christ et al. | Modelling of a wind power turbine | |
Zheng et al. | Design and Performance Analysis of Distributed Equal Angle Spiral Vertical Axis Wind Turbine | |
Shah et al. | Hydrodynamic Design and Optimization of Vertical Axis Water Turbine for Shallow and High Velocity Water Streams of Pakistan |