[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Rastegar et al., 1984 - Google Patents

Simultaneous determination of trace elements in serum by energy-dispersive x-ray fluorescence spectrometry.

Rastegar et al., 1984

View PDF
Document ID
10384826579478309637
Author
Rastegar F
Maier E
Heimburger R
Christophe C
Ruch C
Leroy M
Publication year
Publication venue
Clinical chemistry

External Links

Snippet

Energy-dispersive x-ray fluorescence is applied in the analysis of human serum to determine the concentrations of several elements simultaneously with minimal manipulation of the sample. The analytical procedure has been developed with standard sera, and …
Continue reading at citeseerx.ist.psu.edu (PDF) (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/48Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/48Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/48Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by measuring secondary emission
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by measuring secondary emission by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by using diffraction of the radiation, e.g. for investigating crystal structure; by using reflection of the radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by transmitting the radiation through the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means

Similar Documents

Publication Publication Date Title
JPH05240808A (en) Method for determining fluorescent x rays
Rastegar et al. Simultaneous determination of trace elements in serum by energy-dispersive x-ray fluorescence spectrometry.
Dipietro et al. Comparison of an inductively coupled plasma-atomic emission spectrometry method for the determination of calcium, magnesium, sodium, potassium, copper and zinc with atomic absorption spectroscopy and flame photometry methods
Misra et al. Total reflection X-ray fluorescence: a technique for trace element analysis in materials
Harouaka et al. A novel method for measuring ultra-trace levels of U and Th in Au, Pt, Ir, and W matrices using ICP-QQQ-MS employing an O 2 reaction gas
Ayala et al. Direct determination of lead in whole human blood by total reflection X-ray fluorescence spectrometry
Mangelson et al. Proton induced X-ray emission analysis of Pima Indian autopsy tissues
Leland et al. Analysis of aerosols using total reflection X-ray spectrometry
Bellisola et al. The use of total-reflection X-ray fluorescence to track the metabolism and excretion of selenium in humans
Kubala-Kukuś et al. Total-reflection X-ray fluorescence studies of trace elements in biomedical samples
Giauque et al. Trace element determination using synchrotron radiation
Al-Merey et al. X-ray fluorescence analysis of geological samples: exploring the effect of sample thickness on the accuracy of results
Liendo et al. Comparison between proton‐induced x‐ray emission (PIXE) and total reflection x‐ray fluorescence (TXRF) spectrometry for the elemental analysis of human amniotic fluid
Knoth et al. Determination of copper and iron in human blood serum by energy dispersive X-ray analysis
Ruch et al. Energy dispersive x-ray fluorescence spectrometry with direct excitation at picogram levels
Maier et al. Simultaneous determination of trace elements in lavage fluids from human bronchial alveoli by energy dispersive x-ray fluorescence. 1: Technique and determination of the normal reference interval.
Lankosz et al. Research in quantitative microscopic X-ray fluorescence analysis
Lill et al. A novel method for charge integration in external beam TTPIXE. Application to analyses of biological materials
Jackson Interlaboratory comparison of results of erythrocyte protoporphyrin analysis.
Nakano et al. Preparation of standard materials of aerosol particles for X‐ray fluorescence analysis using a small chamber sampling unit
Williams Application of particle-induced X-ray emission to research in biology and medicine
Santos et al. Development of a portable grazing exit X-ray fluorescence system using a gold anode X-ray tube
Zeitz et al. Zinc analysis in biological specimens by x-ray fluorescence
Mathies X-ray spectrographic microanalysis of human urine for arsenic
Natelson et al. Application of X-ray emission spectrometry to the estimation of the heavy elements (at. no. 79–83): Practical procedure for lead and bismuth in whole blood