[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Khaleque et al., 2017 - Google Patents

Integration of bow-tie plasmonic nano-antennas on tapered fibers

Khaleque et al., 2017

View HTML
Document ID
10354909809240167649
Author
Khaleque A
Mironov E
Osório J
Li Z
Cordeiro C
Liu L
Franco M
Liow J
Hattori H
Publication year
Publication venue
Optics express

External Links

Snippet

In this article, a new and flexible approach to control the electric field enhancement of bow- tie nano-antennas by integrating them on the lateral of a tapered optical fiber is proposed. The device is driven by a Q-switched laser and the performance of a fabricated nano …
Continue reading at opg.optica.org (HTML) (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N2021/653Coherent methods [CARS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/636Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited using an arrangement of pump beam and probe beam; using the measurement of optical non-linear properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/10Light guides of the optical waveguide type
    • G02B6/12Light guides of the optical waveguide type of the integrated circuit kind
    • G02B6/122Light guides of the optical waveguide type of the integrated circuit kind basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • G01N21/554Attenuated total reflection and using surface plasmons detecting the surface plasmon resonance of nanostructured metals, e.g. localised surface plasmon resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/10Light guides of the optical waveguide type
    • G02B6/107Subwavelength-diameter waveguides, e.g. nanowires
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1717Systems in which incident light is modified in accordance with the properties of the material investigated with a modulation of one or more physical properties of the sample during the optical investigation, e.g. electro-reflectance
    • G01N2021/1721Electromodulation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/02Optical fibre with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • GPHYSICS
    • G02OPTICS
    • G02FDEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
    • GPHYSICS
    • G02OPTICS
    • G02FDEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
    • G02F1/35Non-linear optics

Similar Documents

Publication Publication Date Title
Khaleque et al. Integration of bow-tie plasmonic nano-antennas on tapered fibers
Shakya et al. Design of an ultra-sensitive bimetallic anisotropic PCF SPR biosensor for liquid analytes sensing
Smythe et al. Optical properties of surface plasmon resonances of coupled metallic nanorods
Rashid et al. Cog-shaped refractive index sensor embedded with gold nanorods for temperature sensing of multiple analytes
Zhu et al. Planar plasmonic terahertz guided-wave devices
Lahiri et al. Asymmetric split ring resonators for optical sensing of organic materials
Wang et al. High-sensitivity temperature sensor using the ultrahigh order mode-enhanced Goos-Hänchen effect
Hassani et al. Photonic crystal fiber-based plasmonic sensors for the detection of biolayer thickness
Berrier et al. Ultrafast active control of localized surface plasmon resonances in silicon bowtie antennas
Wiedemann et al. Measurement of submicrometre diameters of tapered optical fibres using harmonic generation
Singh et al. Spiral-type terahertz antennas and the manifestation of the Mushiake principle
Lahiri et al. Enhanced Fano resonance of organic material films deposited on arrays of asymmetric split-ring resonators (A-SRRs)
Yan et al. Novel index-guided photonic crystal fiber surface-enhanced Raman scattering probe
Chu et al. Beamed Raman: directional excitation and emission enhancement in a plasmonic crystal double resonance SERS substrate
Bosomtwi et al. Lattice effect for enhanced hot-electron generation in nanoelectrodes
Darvishzadeh-Varcheie et al. Electric field enhancement with plasmonic colloidal nanoantennas excited by a silicon nitride waveguide
You et al. Terahertz plasmonic waveguide based on metal rod arrays for nanofilm sensing
Chen et al. Wedge and gap plasmonic resonances in double nanoholes
Liu et al. Terahertz asymmetric metallic hole arrays with polarization-independent quasi-bound states in the continuum for membrane sensing
Petschulat et al. Doubly resonant optical nanoantenna arrays for polarization resolved
Zhu et al. Influence of symmetry breaking in a planar metamaterial on transparency effect<? A3B2 show [pmg: line-break justify=" yes"/]?> and sensing application
Wang et al. Probing bianisotropic biomolecules via a surface plasmon resonance sensor
Liu et al. OAM mode-excited surface plasmon resonance for refractive index sensing based on a photonic quasi-crystal fiber
Bogdanowicz et al. Light absorption in conical silicon particles
Dayal et al. Independent Tailoring of Super‐Radiant and Sub‐Radiant Modes in High‐Q Plasmonic Fano Resonant Metasurfaces