Cao et al., 2009 - Google Patents
Performance of composite modified asphalt with Trinidad lake asphalt used as waterproofing material for bridge deck pavementCao et al., 2009
- Document ID
- 10295005491018160210
- Author
- Cao W
- Yao Z
- Liu S
- Cui X
- Publication year
- Publication venue
- Journal of Testing and Evaluation
External Links
Snippet
Performance of composite modified asphalt with Trinidad Lake Asphalt (TLA) used as waterproofing material for bridge deck pavement was studied through the shear test, pull-out test, and water permeability test. The results showed that shear strength at 20° C of …
- 239000010426 asphalt 0 title abstract description 110
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C7/00—Coherent pavings made in situ
- E01C7/08—Coherent pavings made in situ made of road-metal and binders
- E01C7/18—Coherent pavings made in situ made of road-metal and binders of road-metal and bituminous binders
- E01C7/26—Coherent pavings made in situ made of road-metal and binders of road-metal and bituminous binders mixed with other materials, e.g. cement, rubber, leather, fibre
- E01C7/262—Coherent pavings made in situ made of road-metal and binders of road-metal and bituminous binders mixed with other materials, e.g. cement, rubber, leather, fibre with fibrous material, e.g. asbestos; with animal or vegetal admixtures, e.g. leather, cork
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/0075—Uses not provided for elsewhere in C04B2111/00 for road construction
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C7/00—Coherent pavings made in situ
- E01C7/08—Coherent pavings made in situ made of road-metal and binders
- E01C7/10—Coherent pavings made in situ made of road-metal and binders of road-metal and cement or like binders
- E01C7/14—Concrete paving
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B26/00—Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
- C04B26/02—Macromolecular compounds
- C04B26/10—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B40/00—Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
- C04B40/0025—Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability obtaining colloidal mortar
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B16/00—Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/36—Manufacture of hydraulic cements in general
- C04B7/48—Clinker treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L95/00—Compositions of bituminous materials, e.g. asphalt, tar, pitch
- C08L95/005—Aqueous compositions, e.g. emulsions
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zarei et al. | Experimental analysis of semi-flexible pavement by using an appropriate cement asphalt emulsion paste | |
Sahmaran et al. | Investigation of the bond between concrete substrate and ECC overlays | |
Zhang et al. | Low E modulus early strength engineered cementitious composites material: Development for ultrathin whitetopping overlay | |
Baghini et al. | Performance evaluation of road base stabilized with styrene–butadiene copolymer latex and Portland cement | |
Luo et al. | Laboratory evaluation of double-layered pavement structures for long-span steel bridge decks | |
Xu et al. | Performance evaluation of waterborne epoxy resin modified emulsified asphalt mixtures for asphalt pavement pothole repair | |
Jiang et al. | Experimental study on the bond and durability properties of mortar incorporating polyacrylic ester and silica fume | |
Chen et al. | Epoxy asphalt concrete protective course used on steel railway bridge | |
Karami | Application of the cementitious grouts on stability and durability of semi flexible bituminous mixtures | |
Mukherjee et al. | Laboratory characterization of a cement grouted bituminous macadam made with Portland slag cement | |
Yin et al. | Using a polymer-based sealant material to make crack repair of asphalt pavement | |
Cao et al. | Performance of composite modified asphalt with Trinidad lake asphalt used as waterproofing material for bridge deck pavement | |
Zhang et al. | Preparation of Emulsified Type Cold-Mix Asphalt with Waterborne Epoxy Resin and Polypropylene Fiber for Pothole Repair | |
US11591473B2 (en) | Tire-rubber and fiber reinforced high performance asphalt composite (RuFiAC) | |
Chen et al. | Strength of copolymer grouting material based on orthogonal experiment | |
Gu et al. | Laboratory performance evaluation of reinforced basalt fiber in sealing asphalt chips | |
Xu et al. | Performance Investigation and Internal-Structure Analysis of Polyurethane Bonded Mixture on Highway Steel Bridge | |
Khayat et al. | Design of ultra high performance concrete as an overlay in pavements and bridge decks. | |
Gupta et al. | Study to Assess the Behaviour of Cement Grouted Bituminous Mix Prepared Using Pozzolanic Grouting Material | |
Elhadary et al. | Bonding Evaluation of Nanosilica-Modified Slag-Based Composites Comprising of Basalt Pellets and Polyvinyl Alcohol Fibers for Shear Joints | |
Ren et al. | Design and performance investigation of drainage ultra-thin wearing course based on diatomite-supported epoxy-modified asphalt mixture | |
Du et al. | Properties of cement asphalt emulsion mortar for pavement | |
Huang et al. | Comprehensive performance evaluation of asphalt mortar based on multi-index weighted decision model | |
Raab et al. | Experimental investigations of moisture damage in asphalt | |
Mohammed et al. | Assessing the bond strength of two-layer Roller Compacted Concrete (RCC) for pavements |