[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Chen et al., 2022 - Google Patents

Fault-tolerant adaptive tracking control of Euler-Lagrange systems–An echo state network approach driven by reinforcement learning

Chen et al., 2022

Document ID
1025950532643833961
Author
Chen Q
Jin Y
Song Y
Publication year
Publication venue
Neurocomputing

External Links

Snippet

Reinforcement learning (RL) has enjoyed considerable success in application to nonlinear systems. However, very few RL-based works that explicitly address the control problem of MIMO nonlinear systems with subject to actuator failures. In this work, we develop a fault …
Continue reading at www.sciencedirect.com (other versions)

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • G05B13/027Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks only
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/063Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
    • G06N3/0635Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means using analogue means
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • G06N3/04Architectures, e.g. interconnection topology
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • G06N99/005Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/04Inference methods or devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/02Knowledge representation
    • G06N5/022Knowledge engineering, knowledge acquisition
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computer systems based on specific mathematical models
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B21/00Systems involving sampling of the variable controlled
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric

Similar Documents

Publication Publication Date Title
Perrusquía et al. Identification and optimal control of nonlinear systems using recurrent neural networks and reinforcement learning: An overview
Song et al. Off-policy actor-critic structure for optimal control of unknown systems with disturbances
Kamalapurkar et al. Reinforcement learning for optimal feedback control
Chen et al. Fault-tolerant adaptive tracking control of Euler-Lagrange systems–An echo state network approach driven by reinforcement learning
Wang et al. Adaptive neural tracking control for a class of nonlinear systems with dynamic uncertainties
Liu et al. Reinforcement-learning-based robust controller design for continuous-time uncertain nonlinear systems subject to input constraints
Song et al. Robust optimal control for a class of nonlinear systems with unknown disturbances based on disturbance observer and policy iteration
Wang et al. Data-based adaptive critic designs for nonlinear robust optimal control with uncertain dynamics
Zhao et al. Observer-critic structure-based adaptive dynamic programming for decentralised tracking control of unknown large-scale nonlinear systems
Sokolov et al. Complete stability analysis of a heuristic approximate dynamic programming control design
Raol et al. Modelling and parameter estimation of dynamic systems
Wang et al. Reinforcement learning-based finite-time tracking control of an unknown unmanned surface vehicle with input constraints
Choi et al. Adaptive observer backstepping control using neural networks
Park et al. Direct adaptive controller for nonaffine nonlinear systems using self-structuring neural networks
Khater et al. Online learning based on adaptive learning rate for a class of recurrent fuzzy neural network
Wang et al. Approximate neural optimal control with reinforcement learning for a torsional pendulum device
Chemachema Output feedback direct adaptive neural network control for uncertain SISO nonlinear systems using a fuzzy estimator of the control error
Liu et al. Online optimal consensus control of unknown linear multi-agent systems via time-based adaptive dynamic programming
Kong et al. Approximate optimal control for an uncertain robot based on adaptive dynamic programming
Radac et al. Three-level hierarchical model-free learning approach to trajectory tracking control
Perrusquía et al. Robot position/force control in unknown environment using hybrid reinforcement learning
Perrusquía et al. Continuous-time reinforcement learning for robust control under worst-case uncertainty
Talaei et al. Boundary control of linear uncertain 1-D parabolic PDE using approximate dynamic programming
Wang et al. Neural learning control of flexible joint manipulator with predefined tracking performance and application to baxter robot
Wang et al. A neural-network-based online optimal control approach for nonlinear robust decentralized stabilization