[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Hu et al., 2020 - Google Patents

An orthogonal hybrid analog–digital multibeam antenna array for millimeter-wave massive MIMO systems

Hu et al., 2020

Document ID
10187327468485834907
Author
Hu Y
Zhan J
Jiang Z
Yu C
Hong W
Publication year
Publication venue
IEEE Transactions on Antennas and Propagation

External Links

Snippet

A hybrid analog-digital multibeam antenna array (MBAA) consisting of two types of 1-D beamformers for two orthogonal planes, respectively, is proposed for massive multiple-input multiple-output (MIMO) communication systems at millimeter-waves. In the vertical direction …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/40Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with phasing matrix
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/06Arrays of individually energised active aerial units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0604Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching with predefined switching scheme
    • H04B7/0606Random or pseudo-random switching scheme
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/28Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the amplitude
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/24Combinations of aerial elements or aerial units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q1/00Details of, or arrangements associated with, aerials
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/06Arrays of individually energised active aerial units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised active aerial units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q1/00Details of, or arrangements associated with, aerials
    • H01Q1/52Means for reducing coupling between aerials; Means for reducing coupling between an aerial and another structure
    • H01Q1/521Means for reducing coupling between aerials; Means for reducing coupling between an aerial and another structure reducing the coupling between adjacent antennas
    • H01Q1/523Means for reducing coupling between aerials; Means for reducing coupling between an aerial and another structure reducing the coupling between adjacent antennas between antennas of an array
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q25/00Aerials or aerial systems providing at least two radiating patterns
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q1/00Details of, or arrangements associated with, aerials
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q13/00Waveguide horns or mouths; Slot aerials; Leaky-waveguide aerials; Equivalent structures causing radiation along the transmission path of a guided wave
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q9/00Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q19/00Combinations of primary active aerial elements and units with secondary devices, e.g. with quasi-optical devices, for giving the aerial a desired directional characteristic

Similar Documents

Publication Publication Date Title
Hu et al. An orthogonal hybrid analog–digital multibeam antenna array for millimeter-wave massive MIMO systems
Hong et al. The role of millimeter-wave technologies in 5G/6G wireless communications
Low et al. A 27–31-GHz 1024-element Ka-band SATCOM phased-array transmitter with 49.5-dBW peak EIRP, 1-dB AR, and±70° beam scanning
Hu et al. A digital multibeam array with wide scanning angle and enhanced beam gain for millimeter-wave massive MIMO applications
Vosoogh et al. $ W $-band low-profile monopulse slot array antenna based on gap waveguide corporate-feed network
Chieh et al. Development of flat panel active phased array antennas using 5G silicon RFICs at Ku-and Ka-bands
Gültepe et al. A 1024-element Ku-band SATCOM dual-polarized receiver with> 10-dB/KG/T and embedded transmit rejection filter
Chen et al. A multibeam antenna based on substrate integrated waveguide technology for MIMO wireless communications
Yu et al. Multibeam generation and measurement of a DDS-based digital beamforming array transmitter at Ka-band
US8264405B2 (en) Methods and apparatus for radiator for multiple circular polarization
CN107817392B (en) System and method for characterizing a multi-element antenna
Zhang et al. Single RF channel digital beamforming multibeam antenna array based on time sequence phase weighting
Lian et al. Planar 2-D scanning SIW multibeam array with low sidelobe level for millimeter-wave applications
Aslan et al. Orthogonal versus zero-forced beamforming in multibeam antenna systems: Review and challenges for future wireless networks
Payami et al. Developing the first mmWave fully-connected hybrid beamformer with a large antenna array
Venkatakrishnan et al. Experimental validation of on-site coding digital beamformer with ultra-wideband antenna arrays
Kong et al. 2-D orthogonal multibeam antenna arrays for 5G millimeter-wave applications
Yu et al. A hybrid radar system with a phased transmitting array and a digital beamforming receiving array
Bagheri et al. A 16× 16 45 slant-polarized gapwaveguide phased array with 65-dBm EIRP at 28 GHz
Lu et al. Dual-band combined-aperture variable inclination continuous transverse stub antenna with consistent beam direction
Gong et al. Dual-layer metamaterial rectangular antenna arrays for in-band full-duplex massive MIMO
Liu et al. Design and fabrication of two‐port three‐beam switched beam antenna array for 60 GHz communication
Lialios et al. A novel rf to millimeter waves frequency translation scheme for ultra-wideband beamformers supporting the sub-6 ghz band
Abbasi et al. Millimeter wave hybrid beamforming with Rotman lens: performance with hardware imperfections
Karami et al. Multifunctional Switched-beam Antenna Located on Solar Cell for Vehicular to Satellite Communication