Qasaimeh, 2009 - Google Patents
Effect of doping on the optical characteristics of quantum-dot semiconductor optical amplifiersQasaimeh, 2009
View PDF- Document ID
- 10173914783906760858
- Author
- Qasaimeh O
- Publication year
- Publication venue
- Journal of lightwave technology
External Links
Snippet
The influence of p-type and n-type doping on the optical characteristics of a quantum-dot semiconductor optical amplifier (SOA) is studied using a rate equation model that takes into account the effect of the multidiscrete energy levels and the charge neutrality relation. Our …
- 230000003287 optical 0 title abstract description 76
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well, or supperlattice structures, e.g. single quantum well lasers (SQW lasers), multiple quantum well lasers (MQW lasers), graded index separate confinement hetrostructure lasers (GRINSCH lasers)
- H01S5/343—Structure or shape of the active region; Materials used for the active region comprising quantum well, or supperlattice structures, e.g. single quantum well lasers (SQW lasers), multiple quantum well lasers (MQW lasers), graded index separate confinement hetrostructure lasers (GRINSCH lasers) in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/34306—Structure or shape of the active region; Materials used for the active region comprising quantum well, or supperlattice structures, e.g. single quantum well lasers (SQW lasers), multiple quantum well lasers (MQW lasers), graded index separate confinement hetrostructure lasers (GRINSCH lasers) in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000nm, e.g. InP based 1300 and 1500nm lasers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well, or supperlattice structures, e.g. single quantum well lasers (SQW lasers), multiple quantum well lasers (MQW lasers), graded index separate confinement hetrostructure lasers (GRINSCH lasers)
- H01S5/3403—Structure or shape of the active region; Materials used for the active region comprising quantum well, or supperlattice structures, e.g. single quantum well lasers (SQW lasers), multiple quantum well lasers (MQW lasers), graded index separate confinement hetrostructure lasers (GRINSCH lasers) having a strained layer structure in which the strain performs a special function, e.g. general strain effects, strain versus polarisation
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well, or supperlattice structures, e.g. single quantum well lasers (SQW lasers), multiple quantum well lasers (MQW lasers), graded index separate confinement hetrostructure lasers (GRINSCH lasers)
- H01S5/343—Structure or shape of the active region; Materials used for the active region comprising quantum well, or supperlattice structures, e.g. single quantum well lasers (SQW lasers), multiple quantum well lasers (MQW lasers), graded index separate confinement hetrostructure lasers (GRINSCH lasers) in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/34313—Structure or shape of the active region; Materials used for the active region comprising quantum well, or supperlattice structures, e.g. single quantum well lasers (SQW lasers), multiple quantum well lasers (MQW lasers), graded index separate confinement hetrostructure lasers (GRINSCH lasers) in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting lasers (SE-lasers)
- H01S5/183—Surface-emitting lasers (SE-lasers) having a vertical cavity (VCSE-lasers)
- H01S5/18308—Surface-emitting lasers (SE-lasers) having a vertical cavity (VCSE-lasers) having a special structure for lateral current or light confinement
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/062—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
- H01S5/0625—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
- H01S5/06255—Controlling the frequency of the radiation
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feed-back lasers (DFB-lasers)
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/04—Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
- H01S5/042—Electrical excitation; Circuits therefor
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S2301/00—Functional characteristics
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L31/00—Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rafailov et al. | Mode-locked quantum-dot lasers | |
Lelarge et al. | Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55$\mu $ m | |
Shchekin et al. | Low-threshold high-T 0 1.3-μm InAs quantum-dot lasers due to p-type modulation doping of the active region | |
Reithmaier et al. | InAs/InP quantum-dash lasers and amplifiers | |
Qasaimeh | Effect of doping on the optical characteristics of quantum-dot semiconductor optical amplifiers | |
Ooi et al. | Quantum dashes on InP substrate for broadband emitter applications | |
Li et al. | Development of modulation p-doped 1310 nm InAs/GaAs quantum dot laser materials and ultrashort cavity Fabry–Perot and distributed-feedback laser diodes | |
US11693178B2 (en) | Monolithic integrated quantum dot photonic integrated circuits | |
Zhang et al. | Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells | |
Rostami et al. | Nanostructure semiconductor optical amplifiers: building blocks for all-optical processing | |
Agarwal et al. | Characterization and optimization of semiconductor optical amplifier for ultra high speed applications: a review | |
Feng et al. | Tunneling modulation of transistor lasers: Theory and experiment | |
Juodawlkis et al. | Packaged 1.5-$\mu $ m Quantum-Well SOA With 0.8-W Output Power and 5.5-dB Noise Figure | |
US7433567B2 (en) | Multi-quantum well optical waveguide with broadband optical gain | |
Raring et al. | Demonstration of widely tunable single-chip 10-Gb/s laser-modulators using multiple-bandgap InGaAsP quantum-well intermixing | |
Qasaimeh | Ultra-fast gain recovery and compression due to Auger-assisted relaxation in quantum dot semiconductor optical amplifiers | |
Kim et al. | Small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers | |
JP5483655B1 (en) | Optical storage device | |
Johni et al. | Research Article Effects on Semiconductor Optical Amplifier Gain Quality for Applications in Advanced All-optical Communication Systems | |
Kaur et al. | Effect of separate confinement hetero-structure layer on tunnel injection transistor laser-based transmitter for high-speed optical communication networks | |
Matsui et al. | Photonic integrated device of highly-stacked quantum dot using quantum dot intermixing by ion implantation | |
Li et al. | Static gain, optical modulation response, and nonlinear phase noise in saturated quantum-dot semiconductor optical amplifiers | |
Qasaimeh | Broadband gain-clamped linear quantum dash optical amplifiers | |
Freude et al. | Linear and nonlinear semiconductor optical amplifiers | |
Wang et al. | Quantum dot materials toward high-speed and ultrafast laser applications |