Gordon et al., 2011 - Google Patents
Low-latency caching for cloud-based web applicationsGordon et al., 2011
View PDF- Document ID
- 10144152224639759734
- Author
- Gordon A
- Lu P
- Publication year
- Publication venue
- Proceedings of the 6th International Workshop on Networking Meets Databases (NetDB’11), Athens, Greece
External Links
Snippet
Many Web applications are now hosted in elastic cloud environments where the unit of resource allocation is a virtual machine (VM) instance; entire VMs are added or removed to scale up or scale down. A variety of techniques can reduce the latency of communication …
- 210000004544 DC2 0 abstract description 15
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/08—Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
- G06F12/0802—Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
- G06F12/0806—Multiuser, multiprocessor or multiprocessing cache systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5005—Allocation of resources, e.g. of the central processing unit [CPU] to service a request
- G06F9/5011—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resources being hardware resources other than CPUs, Servers and Terminals
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/08—Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
- G06F12/10—Address translation
- G06F12/1081—Address translation for peripheral access to main memory, e.g. direct memory access [DMA]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/44—Arrangements for executing specific programmes
- G06F9/455—Emulation; Software simulation, i.e. virtualisation or emulation of application or operating system execution engines
- G06F9/45533—Hypervisors; Virtual machine monitors
- G06F9/45558—Hypervisor-specific management and integration aspects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/54—Interprogramme communication; Intertask communication
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/468—Specific access rights for resources, e.g. using capability register
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30067—File systems; File servers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/60—Protecting data
- G06F21/62—Protecting access to data via a platform, e.g. using keys or access control rules
- G06F21/6218—Protecting access to data via a platform, e.g. using keys or access control rules to a system of files or objects, e.g. local or distributed file system or database
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/14—Protection against unauthorised use of memory or access to memory
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/34—Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation; Recording or statistical evaluation of user activity, e.g. usability assessment
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/15—Use in a specific computing environment
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2201/00—Indexing scheme relating to error detection, to error correction, and to monitoring
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/16—Combinations of two or more digital computers each having at least an arithmetic unit, a programme unit and a register, e.g. for a simultaneous processing of several programmes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network-specific arrangements or communication protocols supporting networked applications
- H04L67/10—Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Aguilera et al. | Remote memory in the age of fast networks | |
US10540279B2 (en) | Server-based persistence management in user space | |
Aguilera et al. | Remote regions: a simple abstraction for remote memory | |
US10977074B2 (en) | Secure identification of execution contexts | |
Peter et al. | Arrakis: The operating system is the control plane | |
US11842217B1 (en) | Isolating tenants executing in multi-tenant software containers | |
Hong et al. | Understanding and mitigating the impact of load imbalance in the memory caching tier | |
Deshpande et al. | Live gang migration of virtual machines | |
US8966464B1 (en) | Isolating tenants executing in multi-tenant software containers | |
Caulfield et al. | Providing safe, user space access to fast, solid state disks | |
Bailleu et al. | Avocado: A Secure {In-Memory} Distributed Storage System | |
US9471353B1 (en) | Isolating tenants executing in multi-tenant software containers | |
US9754122B1 (en) | Isolating tenants executing in multi-tenant software containers | |
Gordon et al. | Low-latency caching for cloud-based web applications | |
Du et al. | XPC: architectural support for secure and efficient cross process call | |
Sartakov et al. | STANlite–a database engine for secure data processing at rack-scale level | |
Ishiguro et al. | Optimizing local file accesses for FUSE-based distributed storage | |
Kumar et al. | Radiant: efficient page table management for tiered memory systems | |
Barham et al. | Xen 2002 | |
Misra et al. | Scaling Distributed File Systems in {Resource-Harvesting} Datacenters | |
Van Moolenbroek et al. | Towards a flexible, lightweight virtualization alternative | |
Thibault et al. | Improving performance by embedding HPC applications in lightweight Xen domains | |
Magoutis | Design and Implementation of a Direct Access File System ({{{{{DAFS}}}}}) Kernel Server for {FreeBSD} | |
Paiker et al. | Design and implementation of an overlay file system for cloud-assisted mobile apps | |
Xu et al. | vread: Efficient data access for hadoop in virtualized clouds |