[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Vairale et al., 2019 - Google Patents

Classification of hypothyroid disorder using optimized SVM method

Vairale et al., 2019

Document ID
1000390902820093054
Author
Vairale V
Shukla S
Publication year
Publication venue
2019 International Conference on Smart Systems and Inventive Technology (ICSSIT)

External Links

Snippet

Hypothyroidism is an endocrine disorder where the thyroid organ doesn't provide the enough amount of thyroid hormones. It is one of the common diseases found in women. Detection of hypothyroidism needs suitable diagnostic tests to encourage prompt analysis …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/30Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
    • G06F19/34Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
    • G06F19/345Medical expert systems, neural networks or other automated diagnosis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/30Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
    • G06F19/34Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
    • G06F19/3487Medical report generation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/30Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
    • G06F19/32Medical data management, e.g. systems or protocols for archival or communication of medical images, computerised patient records or computerised general medical references
    • G06F19/322Management of patient personal data, e.g. patient records, conversion of records or privacy aspects
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/30Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
    • G06F19/34Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
    • G06F19/3437Medical simulation or modelling, e.g. simulating the evolution of medical disorders
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/30Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
    • G06F19/34Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
    • G06F19/3431Calculating a health index for the patient, e.g. for risk assessment
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6268Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6279Classification techniques relating to the number of classes
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/10Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • G06N99/005Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/04Inference methods or devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for a specific business sector, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/22Health care, e.g. hospitals; Social work
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/18Digital computers in general; Data processing equipment in general in which a programme is changed according to experience gained by the computer itself during a complete run; Learning machines
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection

Similar Documents

Publication Publication Date Title
Sharma et al. A comprehensive review of machine learning techniques on diabetes detection
Chakradar et al. A non-invasive approach to identify insulin resistance with triglycerides and HDL-c ratio using machine learning
Afsaneh et al. Recent applications of machine learning and deep learning models in the prediction, diagnosis, and management of diabetes: a comprehensive review
Vairale et al. Classification of hypothyroid disorder using optimized SVM method
CN107358014B (en) Clinical pretreatment method and system of physiological data
CN116864139A (en) Disease risk assessment method, device, computer equipment and readable storage medium
Ahmed et al. TDTD: Thyroid disease type diagnostics
Chinnasamy et al. Machine learning based cardiovascular disease prediction
Alshayeji et al. Two-stage framework for diabetic retinopathy diagnosis and disease stage screening with ensemble learning
Hsu et al. Deep learning for automated diabetic retinopathy screening fused with heterogeneous data from EHRs can lead to earlier referral decisions
Singh Prediction of Thyroid Disease using Deep Learning Techniques
Hassan et al. Efficient prediction of coronary artery disease using machine learning algorithms with feature selection techniques
Alhmiedat et al. The Investigation of Employing Supervised Machine Learning Models to Predict Type 2 Diabetes Among Adults.
Praveen et al. Diabetes Prediction with Ensemble Learning Techniques in Machine Learning
Chowdary et al. Multiple Disease Prediction by Applying Machine Learning and Deep Learning Algorithms
Sonia et al. An empirical evaluation of benchmark machine learning classifiers for risk prediction of cardiovascular disease in diabetic males
Ganesh et al. Diabetes Prediction using Logistic Regression and Feature Normalization
Qin A Prediction Model of Diabetes Based on Ensemble Learning
Nagaraj et al. Case Study: Application of Ensemble Classifier for Diabetes Healthcare Data Analytics
Dhar et al. Enhancing thyroid disease detection with ensemble-based machine learning algorithms
Goel et al. Advanced Data Imputation Techniques for Predicting Type 2 Diabetes using Machine Learning
Hussain et al. Cardiovascular Diseases Classification Via Machine Learning Systems
Mohite et al. Amalgam based cardiovascular disease prediction using Xception with XGBoost model
Thakur et al. Empathetic Analytics: Understanding Diabetes through AI
Deepa et al. Early diagnosis of diabetes mellitus using data mining and machine learning techniques