Wang et al., 2021 - Google Patents
Adaptive optics in super-resolution microscopyWang et al., 2021
View HTML- Document ID
- 9973777834068873572
- Author
- Wang J
- Zhang Y
- Publication year
- Publication venue
- Biophysics Reports
External Links
Snippet
Fluorescence microscopy has become a routine tool in biology for interrogating life activities with minimal perturbation. While the resolution of fluorescence microscopy is in theory governed only by the diffraction of light, the resolution obtainable in practice is also …
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
- G01N21/6456—Spatial resolved fluorescence measurements; Imaging
- G01N21/6458—Fluorescence microscopy
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
- G02B21/0024—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
- G02B21/0052—Optical details of the image generation
- G02B21/0076—Optical details of the image generation arrangements using fluorescence or luminescence
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
- G02B21/0024—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
- G02B21/0052—Optical details of the image generation
- G02B21/0072—Optical details of the image generation details concerning resolution or correction, including general design of CSOM objectives
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B21/00—Microscopes
- G02B21/16—Microscopes adapted for ultra-violet illumination; Fluorescence microscopes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
- G02B21/0024—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
- G02B21/0028—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders specially adapted for specific applications, e.g. for endoscopes, ophthalmoscopes, attachments to conventional microscopes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B21/00—Microscopes
- G02B21/36—Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
- G02B21/365—Control or image processing arrangements for digital or video microscopes
- G02B21/367—Control or image processing arrangements for digital or video microscopes providing an output produced by processing a plurality of individual source images, e.g. image tiling, montage, composite images, depth sectioning, image comparison
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
- G01N2021/653—Coherent methods [CARS]
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B27/00—Other optical systems; Other optical apparatus
- G02B27/58—Optics for apodization or superresolution; Optical synthetic aperture systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B21/00—Microscopes
- G02B21/32—Micromanipulators structurally combined with microscopes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B26/00—Optical devices or arrangements using movable or deformable optical elements for controlling the intensity, colour, phase, polarisation or direction of light, e.g. switching, gating, modulating
- G02B26/06—Optical devices or arrangements using movable or deformable optical elements for controlling the intensity, colour, phase, polarisation or direction of light, e.g. switching, gating, modulating for controlling the phase of light
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B21/00—Microscopes
- G02B21/06—Means for illuminating specimens
- G02B21/08—Condensers
- G02B21/10—Condensers affording dark-field illumination
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B3/00—Simple or compound lenses
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ji | Adaptive optical fluorescence microscopy | |
Olarte et al. | Light-sheet microscopy: a tutorial | |
Booth et al. | Aberrations and adaptive optics in super-resolution microscopy | |
Backlund et al. | The role of molecular dipole orientation in single‐molecule fluorescence microscopy and implications for super‐resolution imaging | |
Booth | Adaptive optical microscopy: the ongoing quest for a perfect image | |
Tao et al. | Live imaging using adaptive optics with fluorescent protein guide-stars | |
Deschout et al. | Precisely and accurately localizing single emitters in fluorescence microscopy | |
Booth | Adaptive optics in microscopy | |
von Diezmann et al. | Correcting field-dependent aberrations with nanoscale accuracy in three-dimensional single-molecule localization microscopy | |
Allen et al. | Structured illumination microscopy for superresolution | |
Zhang et al. | Adaptive optics for optical microscopy | |
US9507134B2 (en) | Method and optical device for super-resolution localization of a particle | |
Kner et al. | High‐resolution wide‐field microscopy with adaptive optics for spherical aberration correction and motionless focusing | |
Booth et al. | Adaptive optics for biomedical microscopy | |
Birk | Super-resolution microscopy: a practical guide | |
Küppers et al. | Confocal interferometric scattering microscopy reveals 3D nanoscopic structure and dynamics in live cells | |
Wang et al. | Adaptive optics in super-resolution microscopy | |
Doi et al. | High-resolution imaging in two-photon excitation microscopy using in situ estimations of the point spread function | |
Zdankowski et al. | Numerically enhanced stimulated emission depletion microscopy with adaptive optics for deep-tissue super-resolved imaging | |
Li et al. | Prospects for fluorescence nanoscopy | |
Kozawa et al. | Light needle microscopy with spatially transposed detection for axially resolved volumetric imaging | |
Tu et al. | Accurate background reduction in adaptive optical three-dimensional stimulated emission depletion nanoscopy by dynamic phase switching | |
Zeng et al. | Advances in three‐dimensional super‐resolution nanoscopy | |
Yang et al. | Computational nonscanning incoherent superoscillatory imaging | |
Navikas et al. | Adaptive optics enables multimode 3D super-resolution microscopy via remote focusing |