O'Brien et al., 1997 - Google Patents
2.2-W continuous-wave diffraction-limited monolithically integrated master oscillator power amplifier at 854 nmO'Brien et al., 1997
View PDF- Document ID
- 9952845324107633869
- Author
- O'Brien S
- Lang R
- Parke R
- Major J
- Welch D
- Mehuys D
- Publication year
- Publication venue
- IEEE Photonics Technology Letters
External Links
Snippet
A monolithically integrated master oscillator power amplifier (M-MOPA) with a flared power amplifier region operating at 854 nm has been fabricated that radiates in a single diffraction- limited lobe to an output power of 2.2-W continuous wave (CW). Additionally, the far field is …
- 230000000051 modifying 0 abstract description 3
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/062—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
- H01S5/0625—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
- H01S5/06255—Controlling the frequency of the radiation
- H01S5/06256—Controlling the frequency of the radiation with DBR-structure
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4025—Array arrangements, e.g. constituted by discrete laser diodes or laser bar
- H01S5/4031—Edge-emitting structures
- H01S5/4043—Edge-emitting structures with vertically stacked active layers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feed-back lasers (DFB-lasers)
- H01S5/125—Distributed Bragg reflector lasers (DBR-lasers)
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/14—External cavity lasers
- H01S5/146—External cavity lasers using a fiber as external cavity
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting lasers (SE-lasers)
- H01S5/183—Surface-emitting lasers (SE-lasers) having a vertical cavity (VCSE-lasers)
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/026—Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting lasers (SE-lasers)
- H01S5/187—Surface-emitting lasers (SE-lasers) using a distributed Bragg reflector (SE-DBR-lasers)
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well, or supperlattice structures, e.g. single quantum well lasers (SQW lasers), multiple quantum well lasers (MQW lasers), graded index separate confinement hetrostructure lasers (GRINSCH lasers)
- H01S5/343—Structure or shape of the active region; Materials used for the active region comprising quantum well, or supperlattice structures, e.g. single quantum well lasers (SQW lasers), multiple quantum well lasers (MQW lasers), graded index separate confinement hetrostructure lasers (GRINSCH lasers) in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/34313—Structure or shape of the active region; Materials used for the active region comprising quantum well, or supperlattice structures, e.g. single quantum well lasers (SQW lasers), multiple quantum well lasers (MQW lasers), graded index separate confinement hetrostructure lasers (GRINSCH lasers) in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/0607—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/04—Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
- H01S5/042—Electrical excitation; Circuits therefor
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/005—Optical devices external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S2301/00—Functional characteristics
Similar Documents
Publication | Publication Date | Title |
---|---|---|
O'Brien et al. | 2.2-W continuous-wave diffraction-limited monolithically integrated master oscillator power amplifier at 854 nm | |
Parke et al. | 2.0 W CW, diffraction-limited operation of a monolithically integrated master oscillator power amplifier | |
O'Brien et al. | Operating characteristics of a high-power monolithically integrated flared amplifier master oscillator power amplifier | |
USRE37354E1 (en) | Semiconductor laser with integral spatial mode filter | |
US5537432A (en) | Wavelength-stabilized, high power semiconductor laser | |
KR101145778B1 (en) | Frequency tunable thz transceivers and manufacturing method of dual wavelength laser | |
Bjorlin et al. | Long wavelength vertical-cavity semiconductor optical amplifiers | |
Uemukai et al. | Integrated AlGaAs quantum-well ridge-structure two-wavelength distributed Bragg reflector laser for terahertz wave generation | |
Faugeron et al. | High Power Three-Section Integrated Master Oscillator Power Amplifier at 1.5$\mu\text {m} $ | |
US6600765B2 (en) | High-power coherent arrays of vertical cavity surface-emitting semiconducting lasers | |
O'brien et al. | 5-W CW diffraction-limited InGaAs broad-area flared amplifier at 970 nm | |
Zink et al. | Monolithic master oscillator tilted tapered power amplifier emitting 9.5 W at 1060 nm | |
Adachi et al. | 100° C, 25 Gbit/s direct modulation of 1.3 µm surface emitting laser | |
Osinski et al. | High-power, spectrally coherent array of monolithic flared amplifier-master oscillator power amplifiers (MFA-MOPAs) | |
Blume et al. | 633-nm single-mode master-oscillator power-amplifier module | |
Chang et al. | SOA-Integrated Widely Tunable Laser Array for All-Solid Lidar Application | |
EP1481450B1 (en) | A de-tuned distributed feedback laser diode | |
Knigge et al. | High pulse power wavelength stabilized laser diodes for automotive LiDAR | |
Talneau et al. | Agile and fast switching monolithically integrated four wavelength selectable source at 1.55 μm | |
Pham et al. | Monolithic InP master oscillator power amplifier for free space optical transmissions at 1.5 µm | |
O'brien et al. | High-power diffraction-limited monolithic broad area master oscillator power amplifier | |
Dzurko et al. | 1-W single-mode edge-emitting DBR ring oscillators | |
Uemukai et al. | Tunable external-cavity semiconductor laser using monolithically integrated tapered amplifier and grating coupler for collimation | |
Welch et al. | High-power coherent, semiconductor laser, master oscillator power amplifiers and amplifier arrays | |
Pezeshki et al. | 660 nm 250 mW GaInP/AlInP monolithically integrated master oscillator power amplifier |