[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Sun et al., 2004 - Google Patents

Effect of Co Content on Rate Performance of LiMn0. 5− x Co2x Ni0. 5− x O 2 Cathode Materials for Lithium-Ion Batteries

Sun et al., 2004

Document ID
991763064250685357
Author
Sun Y
Ouyang C
Wang Z
Huang X
Chen L
Publication year
Publication venue
Journal of the Electrochemical Society

External Links

Snippet

Layer-structured was prepared as cathode material for lithium-ion batteries. The structures of the layered materials and the oxidation states of the elements in the compounds were characterized by X-ray diffraction and X-ray photoelectron spectroscopy. Adsorbed oxygen …
Continue reading at iopscience.iop.org (other versions)

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/12Battery technology
    • Y02E60/122Lithium-ion batteries
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes

Similar Documents

Publication Publication Date Title
Sun et al. Effect of Co Content on Rate Performance of LiMn0. 5− x Co2x Ni0. 5− x O 2 Cathode Materials for Lithium-Ion Batteries
Kasnatscheew et al. Learning from overpotentials in lithium ion batteries: a case study on the LiNi1/3Co1/3Mn1/3O2 (NCM) cathode
Wang et al. Electrochemical evaluation and structural characterization of commercial LiCoO2 surfaces modified with MgO for lithium-ion batteries
Cheng et al. Nanosized Li4Ti5O12 prepared by molten salt method as an electrode material for hybrid electrochemical supercapacitors
Mi et al. In situ synthesis and properties of carbon-coated LiFePO4 as Li-ion battery cathodes
Liu et al. Synthesis of Mg and Mn doped LiCoO2 and effects on high voltage cycling
Sun et al. Improved Electrochemical Performances of Surface-Modified Spinel LiMn2 O 4 for Long Cycle Life Lithium-Ion Batteries
Park et al. Electrochemical Properties of LiCoO2-Coated LiMn2 O 4 Prepared by Solution-Based Chemical Process
Thorne et al. Structure and electrochemistry of NaxFexMn1-xO2 (1.0≤ x≤ 0.5) for Na-ion battery positive electrodes
Noh et al. Role of Li6CoO4 cathode additive in Li-ion cells containing low coulombic efficiency anode material
Lee et al. Improved rate capability and thermal stability of LiNi0. 5Co0. 2Mn0. 3O2 cathode materials via nanoscale SiP2O7 coating
Kumar et al. Carbon coated LiMnPO4 nanorods for lithium batteries
Srur-Lavi et al. Studies of the electrochemical behavior of LiNi0. 80Co0. 15Al0. 05O2 electrodes coated with LiAlO2
Redel et al. High-performance Li-rich layered transition metal oxide cathode materials for Li-ion batteries
Kang et al. Particle size effect of anatase TiO2 nanocrystals for lithium-ion batteries
Li et al. Studies on storage characteristics of LiNi0. 4Co0. 2Mn0. 4O2 as cathode materials in lithium-ion batteries
Kim et al. Lithium intercalation and crystal chemistry of Li3VO4 synthesized by ultrasonic nebulization as a new anode material for secondary lithium batteries
Borgel et al. LiMn0. 8Fe0. 2PO4/Li4Ti5O12, a possible Li-ion battery system for load-leveling application
Van Nghia et al. Synthesis and electrochemical properties of sodium manganese-based oxide cathode material for sodium-ion batteries
Kobylianska et al. Surface modification of the LiNi0. 5Co0. 2Mn0. 3O2 cathode by a protective interface layer of Li1. 3Ti1. 7Al0. 3 (PO4) 3
Yoon et al. Low temperature electrochemical properties of Li [NixCoyMn1-xy] O2 cathode materials for lithium-ion batteries
Kim et al. Tin-based oxides as anode materials for lithium secondary batteries
Wang et al. Superior electrochemical and kinetics performance of LiNi0. 8Co0. 15Al0. 05O2 cathode by neodymium synergistic modifying for lithium ion batteries
Kim et al. Access to M3+/M2+ redox couples in layered LiMS2 sulfides (M= Ti, V, Cr) as anodes for Li-ion battery
Phattharasupakun et al. Impact of Al doping and surface coating on the electrochemical performances of Li-Rich Mn-rich Li1. 11Ni0. 33Mn0. 56O2 positive electrode material