Roh et al., 2016 - Google Patents
Harman measurements for thermoelectric materials and modules under non-adiabatic conditionsRoh et al., 2016
View HTML- Document ID
- 9784524931740606553
- Author
- Roh I
- Lee Y
- Kang M
- Lee J
- Baek S
- Kim S
- Ju B
- Hyun D
- Kim J
- Kwon B
- Publication year
- Publication venue
- Scientific reports
External Links
Snippet
Accuracy of the Harman measurement largely depends on the heat transfer between the sample and its surroundings, so-called parasitic thermal effects (PTEs). Similar to the material evaluations, measuring thermoelectric modules (TEMs) is also affected by the PTEs …
- PSFDQSOCUJVVGF-UHFFFAOYSA-N Harman   C12=CC=CC=C2NC2=C1C=CN=C2C 0 title abstract description 70
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K17/00—Measuring quantity of heat
- G01K17/06—Measuring quantity of heat conveyed by flowing mediums, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device
- G01K17/08—Measuring quantity of heat conveyed by flowing mediums, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature
- G01K17/20—Measuring quantity of heat conveyed by flowing mediums, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature across a radiating surface, combined with ascertainment of the heat transmission coefficient
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply, e.g. by thermoelectric elements
- G01K7/02—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply, e.g. by thermoelectric elements using thermoelectric elements, e.g. thermocouples
- G01K7/04—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply, e.g. by thermoelectric elements using thermoelectric elements, e.g. thermocouples the object to be measured not forming one of the thermo-electric materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply, e.g. by thermoelectric elements
- G01K7/02—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply, e.g. by thermoelectric elements using thermoelectric elements, e.g. thermocouples
- G01K7/10—Arrangements for compensating for auxiliary variables, e.g. length of lead
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
- G01N25/18—Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the impedance of the material
- G01N27/04—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the impedance of the material by investigating resistance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply, e.g. by thermoelectric elements
- G01K7/16—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply, e.g. by thermoelectric elements using resistive elements
- G01K7/22—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply, e.g. by thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
- G01K7/223—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply, e.g. by thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor characterised by the shape of the resistive element
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L35/00—Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L35/12—Selection of the material for the legs of the junction
- H01L35/14—Selection of the material for the legs of the junction using inorganic compositions
- H01L35/20—Selection of the material for the legs of the junction using inorganic compositions comprising metals only
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
- G01N25/20—Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L35/00—Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L35/28—Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof operating with Peltier or Seebeck effect only
- H01L35/32—Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof operating with Peltier or Seebeck effect only characterised by the structure or configuration of the cell or thermo-couple forming the device including details about, e.g., housing, insulation, geometry, module
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
- G01N25/005—Investigating or analyzing materials by the use of thermal means by investigating specific heat
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K3/00—Thermometers giving results other than momentary value of temperature
- G01K3/08—Thermometers giving results other than momentary value of temperature giving differences of values; giving differentiated values
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Roh et al. | Harman measurements for thermoelectric materials and modules under non-adiabatic conditions | |
Ziabari et al. | Full-field thermal imaging of quasiballistic crosstalk reduction in nanoscale devices | |
Jin et al. | Exploring Peltier effect in organic thermoelectric films | |
Martin | Protocols for the high temperature measurement of the Seebeck coefficient in thermoelectric materials | |
García-Cañadas et al. | Impedance spectroscopy models for the complete characterization of thermoelectric materials | |
Martin | Apparatus for the high temperature measurement of the Seebeck coefficient in thermoelectric materials | |
Bradley et al. | Nanoelectronic primary thermometry below 4 mK | |
Ezenwa et al. | Electrical resistivity of solid and liquid Cu up to 5 GPa: Decrease along the melting boundary | |
Kang et al. | Correction of the electrical and thermal extrinsic effects in thermoelectric measurements by the harman method | |
Downey et al. | Characterization of thermoelectric elements and devices by impedance spectroscopy | |
Linseis et al. | Platform for in-plane ZT measurement and Hall coefficient determination of thin films in a temperature range from 120 K up to 450 K | |
Ziolkowski et al. | Heat flow measurement as a key to standardization of thermoelectric generator module metrology: A comparison of reference and absolute techniques | |
Amatya et al. | High temperature Z-meter setup for characterizing thermoelectric material under large temperature gradient | |
Aksöz et al. | The measurement of thermal conductivity variation with temperature for solid materials | |
Adnane et al. | High temperature setup for measurements of Seebeck coefficient and electrical resistivity of thin films using inductive heating | |
Ezenwa et al. | Constant electrical resistivity of Zn along the melting boundary up to 5 GPa | |
Stojanovic et al. | Direct measurement of thermal conductivity of aluminum nanowires | |
Alajlouni et al. | Geometrical quasi-ballistic effects on thermal transport in nanostructured devices | |
Sarath Kumar et al. | A hot probe setup for the measurement of Seebeck coefficient of thin wires and thin films using integral method | |
Rawat et al. | Simple design for Seebeck measurement of bulk sample by 2-probe method concurrently with electrical resistivity by 4-probe method in the temperature range 300–1000 K | |
Patel et al. | Automated instrumentation for high-temperature Seebeck coefficient measurements | |
Pandey et al. | A fully automated temperature-dependent resistance measurement setup using van der Pauw method | |
Ziolkowski et al. | Interlaboratory Testing for High‐Temperature Power Generation Characteristics of a Ni‐Based Alloy Thermoelectric Module | |
Edler et al. | Reference material for Seebeck coefficients | |
Garrido et al. | The central role of the Peltier coefficient in thermoelectric cooling |